直齿轮和斜齿轮承载能力计算 第21部分:胶合承载能力计算 积温法_第1页
直齿轮和斜齿轮承载能力计算 第21部分:胶合承载能力计算 积温法_第2页
直齿轮和斜齿轮承载能力计算 第21部分:胶合承载能力计算 积温法_第3页
直齿轮和斜齿轮承载能力计算 第21部分:胶合承载能力计算 积温法_第4页
直齿轮和斜齿轮承载能力计算 第21部分:胶合承载能力计算 积温法_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GB/Z3480.21—XXXX/ISO/TS6336-213直齿轮和斜齿轮承载能力计算第21部分:胶合承载能力计算积温法ISO53通用机械和重型机械用圆柱齿轮标准基本齿条齿廓(Cylindricalgearsforgeneralandheavyengineering—Standardbasicracktoothprofil注:GB/T1356—2001通用机械和重型机械用圆柱齿轮注:GB/T3374.2—2011齿轮术语和定义第2部分gears—ISOsystemofflanktoleranceclassification—Part1:Definitionsandallowablevaluesofdevirelevanttoflanksofgearteeth)3.2符号和单位aBMb—c'4ddadbEFnNFtNgan1,2gfn1,2g*—KA—Kv—胶合承载能力计算的齿间载荷分配系数,=KHα 胶合承载能力计算的螺旋线载荷分布系数,=KHβ—KBγ胶合承载能力计算的斜齿轮载荷系数【见63— —m—pen—SintS —T1T1Tu—v5N/mmXBE—XE XCa—XL—XM—XQ—XR—XS—XW XWT—XWrelTXmpXαβ—Xε—z—α°°°°°'αt°°β°βb°βs°Γ γ°—εf 6————η—mPa·sϑ°ϑflaEKϑflaintKϑintKϑintPKϑintSKϑflaintT℃℃℃ϑMT℃λMµmC—ν ξρCnρn1,2Σ°φ°—12a7bnstT4.2胶合损伤大多数情况下,齿轮抗胶合能力的提高可以通过使用具有增强极压(EP)特性的润滑剂来实现。的限制等。由于这些不利影响,满足性能要求的润滑剂的最佳选择是尽可能少用添加由于各种参数的不断变化,以及在瞬时接触区内化学特性与热-液-弹作用的复杂性,在胶合风险4.3积温准则评价胶合概率的方法是基于这样的假设,即当沿啮合线的接触温度平均值等于或超过某个“临界值”时胶合就可能会发生。本文件的方法中,本体温度与沿啮合线的闪温平均值的“积温”。本体温度按6.1.6计算,闪温的平均值近似地用沿啮合线的摩擦系数、动载荷再引入一个加权系数,以考虑实际的本体温度与数学积分的平均闪温值对胶5.1平均摩擦系数μmC沿啮合线的平均摩擦系数(μmC)来源于测量并按公式(1)近似地计算出。虽然,局部摩擦系数在GB/Z3480.21—XXXX/ISO/TS6336-218..XR.XL·······································wBt——胶合承载能力计算的单位轮齿载荷;ηoil——油温下的动力黏度;XR——粗糙度系数;注:公式(1)是从中心距a≈100mm的齿积温法和闪温法在计算摩擦系数时以不同的方式考虑了齿轮的大小。µmC的计算公式由以下运行条件的试验得出,外推过程可能导致wBt≥150N/mm'v=················································X——总重合度,εγ;当2<εγ<3.5时,计算按公式(5)GB/Z3480.21—XXXX/ISO/TS6336-2191+0.2.············································XR是粗糙度系数):XR=2.2∙(Ra⁄predC)0.25 Ra1和Ra2分别是小轮和大轮在新加工齿面上测量的齿面粗糙度值(例如,标准的XL是润滑剂系数.XL·····································5.2跑合系数(XE)XE=1+················································);5.3热闪系数(XM)啮合线上任意点(符号y)热闪系数的计算(见图2)如公式(10)所示:GB/Z3480.21—XXXX/ISO/TS6336-21Γ的计算按公式(11−1····················································如果小轮和大轮的材料是相同的,公式(10)可简················································在上式中,热接触系数BM见公式(13···················································v=3.8N/(mm2·K),E=206000N/mm2则XM=50.0K·N-0.75·s0.5·m-0.5·mm5.4压力角系数(Xαβ)压力角系数Xαβ是将分度圆上的载荷与切线速度转换到节圆上的系数。方法A:系数Xαβ-A如公式(14)所示:Xuβ-A=1.22.·································GB/Z3480.21—XXXX/ISO/TS6336-21表3方法B:系数Xαβ-Bβ=0°对于法向压力角为αn=20°的齿轮,其压力角系数可近似取值为Xαβ-B6.1.2胶合安全系数(SintS)SintSSmin··················································度、跑合效果、载荷系数的合理选择、润滑油的承载能SS1=··············································6.1.3许用积温(ϑintP)·····················································最小安全系数SSmin对每种实际情况应分别确定。GB/Z3480.21—XXXX/ISO/TS6336-216.1.4积温(ϑint)8.88ε···············································6.1.5小轮齿顶闪温(ϑflaE)齿轮齿面接触路径上某一点的计算的增加温度。小轮齿顶闪温的计算如公式(20)所示:.XM.XBE.Xαβ6.1.6本体温度(ϑM)经箱体壁传递到周围环境;对于喷油润滑,热量通过油进入外部的热交本体温度作为平均值或齿宽上的分布温度可采用试验测定或基于已知功率损耗与传热数据进行理8.Xmp.8.XS···········································(21)Xmp——啮合系数,计算如公式(22)所示Xmp=··············································np——同时啮合的齿轮数量。6.1.7平均摩擦系数(μmC)GB/Z3480.21—XXXX/ISO/TS6336-21点处曲率半径(ρE)的函数。——齿数z2;——齿数比u;——中心距a;PE1=0.5.·················································'P 6.1.12啮入系数(XQ)啮入系数(XQ)考虑了在高滑动区域进入啮合处(从动齿轮的齿顶处)的冲击载荷。可用啮入重XQ=1.40-··················································XQ ················································································································GB/Z3480.21—XXXX/ISO/TS6336-21····················································································受载轮齿的弹性变形在滑动较大的齿顶处会产生高的冲击载荷。齿顶修缘系数(XCa)考虑了齿廓修形对承载的影响。XCa是一个相对的齿顶修缘系数,它取决于相对于因弹性变形引起的有效齿顶修缘XCaGB/Z3480.21—XXXX/ISO/TS6336-21 Ceff=······················································Ceff=······················································b——齿宽。当大轮和小轮齿宽不同时,取其中较小值。··············································):·························2Xε=.(0.18.ε+0.70.ε+0.82.ε1−0.52.ε2−0.30.ε1.ε2)····················(42)GB/Z3480.21—XXXX/ISO/TS6336-········································对于2≤εα<3,ε1<ε2(见图6····················ε标引序号说明:GB/Z3480.21—XXXX/ISO/TS6336-21标引序号说明:6.2胶合积温胶合积温是产生胶合的温度极限值,它可在试验结果的基础上进行计试验或已通过实际的齿轮损伤情况来确定。当试验齿轮的材料和热处理与实际齿轮不一致时,应修正胶合温度。因为极限GB/Z3480.21—XXXX/ISO/TS6336-21轮润滑油与齿轮材料组合的特性,并可以通过对相似的油与材料的组合测试来确定。值,因此,可以对任意油品(如纯矿物油、极压油或合成油)的胶合积温数值进行评估。热处理或表面处理的齿轮钢与矿物油组合的近似胶合积温可以由其他热处理或表面处理的齿轮钢8.86.2.2.3由试验结果确定的ϑMT、ϑflaintT8.XL············································.XL···········································T3.726.(A)2································b)对于Ryder与FZG‑Ryder试验R/46.5/T.XL···········································Fbt/b——单位为磅每英寸(lb/in)。8.XL··············································(52).XL··········································GB/Z3480.21—XXXX/ISO/TS6336-Y1——温度,单位为摄氏度(℃);Y2——温度,单位为华氏度(°FX——单位齿宽的法向载荷(Fbt/bTY1——温度,单位为摄氏度(℃);Y2——温度,单位为华氏度(°F)。图8Ryder与FZG-Ryder齿GB/Z3480.21—XXXX/ISO/TS6336-Y2——试验齿轮的平均闪温(ϑflaintT单位为开尔文(K注:ϑflaintT≈0.75T1T0.95ηmT-6.2.3相对焊合系数(XWrelT)XWrelT=····················································XWT——对于FZG齿轮试验、Ryder齿轮试验以及FXW——实际齿轮材料的焊合系数,见表4。GB/Z3480.21—XXXX/ISO/TS6336-21表4焊合系数(XW)XWz1—z2—ammmm°β°x1—bmmda1mmda2mm00 2PRa2.00Rz-ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE KA—Kv—KBβ—KBα μmC ϑMϑintSintS—值z1—z2 ammmm°β°x1 bmmda1mmda2mm00——1PRaRz-ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE—KA Kv KBβ—KBα—μmC—ϑMϑintSintS—值z1—5z2 ammmm°β°x1—bmmda1mmda2mm00——1PRaRz—ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE—KA—Kv—KBβ—KBα μmC ϑMϑintSintS—2.0值z1—z2—ammmm°β°x1—bmmda1mmda2mm00——1PRa2.00Rz—ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE—KA—Kv KBβ KBα—μmC—ϑMϑintSintS—值z1 z2—ammmm°β°x1—bmmda1mmda2mm00——1Pmin–1Ra2.00Rz—ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT XE KA—Kv—KBβ—KBα μmC—ϑMϑintSintS—2.3值z1—z2 44ammmm°β°x1—bmmda1mmda2mm——1Pmin–1RaRz—ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE—KA Kv KBβ—KBα—μmC—ϑMϑintSintS 值z1—46z2 ammmm°β°x1 bmmda1mmda2mm00——1Pmin–1RaRz-ϑoil40℃时润滑剂运动粘度T1TNmXS—XWrelT—XE KA Kv—KBβ—KBα—μmC ϑMϑintSintS—胶合值z1—z2—ammmm°β°x1 bmmda1mmda2mm00 1P–1RaRz—ϑoil40℃时润滑剂运动粘度矩T1TNmXS XWrelT—XE—KA—Kv KBβ—KBα—μmC—ϑMϑintSintS 胶合GB/Z3480.21—XXXX/ISO/TS6336-21B.1本附录描述了按照文献[9]针对接——跨接触的平均加权表面温度,ϑintS。压润滑油的齿轮在高速时的胶合计算是很保守的(图B.1)。X——节线速度(vt单位为米每秒(m/s)图B.1胶合承载与速度的关系正给出了所要求的结果:计算的胶合载荷与测定的胶GB/Z3480.21—XXXX/ISO/TS6336-21X——接触时间tC,单位为微秒(μsY——接触温度ϑC,单位为摄氏度(°C在图B.2中,用两段直线近似地表示了胶合温度(ϑS)与接触时间(tC)的关系:C+CS.X·································XWrelT——相对焊合系数;+tCm·········································GB/Z3480.21—XXXX/ISO/TS6336-21··················································胶合温度存在一个恒定的值(在长接触时间的范围内),如8tC是齿面(小轮或大轮)上的一个点通过赫兹接触宽度(2×bH)所需要的时间,计算如(B.5)~tC1=·····················································tC2=·····················································)·······················如果没有适用于高速时的油品的试验结果,胶合温度ϑS可用下列C+18.X8s·······························(B.8)·············································v);GB/Z3480.21—XXXX/ISO/TS6336-21[1]ISO1122-1,Vocabularyofgearterms—Part1:D[2]ISO6336-1,Calculationofloadcapacityofspuprinciples,introductionandgeneralinfluencefactors[3]ISO/TS6336-20,Calculationofloadcapacityofspurandhelicalgears—Part20:Calculationofscuf

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论