版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则,的大致图象大致是的()A. B.C. D.2.设是虚数单位,则()A. B. C. D.3.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.4.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.35.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件6.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.7.定义在上的函数满足,则()A.-1 B.0 C.1 D.28.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A. B. C.- D.-9.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种10.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.11.若复数满足(是虚数单位),则的虚部为()A. B. C. D.12.设i是虚数单位,若复数()是纯虚数,则m的值为()A. B. C.1 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则________.14.如图所示梯子结构的点数依次构成数列,则________.15.函数的定义域为__________.16.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.18.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.19.(12分)设都是正数,且,.求证:.20.(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,,使.21.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.22.(10分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.2、A【解析】
利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.3、C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.4、B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.5、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.6、D【解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.7、C【解析】
推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.8、A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.9、B【解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.10、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.11、A【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.12、A【解析】
根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,∴,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【详解】由为偶函数,知其一次项的系数为0,所以,,所以,故答案为:-5【点睛】本题考查由奇偶性求解参数,求函数值,属于基础题14、【解析】
根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.15、【解析】
根据函数成立的条件列不等式组,求解即可得定义域.【详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.16、,【解析】
根据是偶函数和的图象关于点对称,即可求出满足条件的和.【详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【点睛】本题主要考查了正弦型三角函数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以,又因为,,,所以,因此,所以,因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【点睛】本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.18、(1),;(2).【解析】
(1)利用极坐标和直角坐标的互化公式,即得解;(2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为圆心,为半径的圆上,所以的最大值为,即得解.【详解】(1)因为点在曲线上,为正三角形,所以点在曲线上.又因为点在曲线上,所以点的极坐标是,从而,点的极坐标是.(2)由(1)可知,点的直角坐标为,B的直角坐标为设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,有即点在以为圆心,为半径的圆上.,所以的最大值为.【点睛】本题考查了极坐标和参数方程综合,考查了极坐标和直角坐标互化,参数方程的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19、证明见解析【解析】
利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。20、(1)见解析;(2)证明见解析.【解析】
(1),分,,,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).①当时,恒成立,当时,;当时,,所以,在上是减函数,在上是增函数.②当时,,.当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.③当时,,则在上是减函数.④当时,,当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,,.令,,故在上是减函数,有,所以,从而.,,则,令,显然在上是增函数,且,,所以存在使,且在上是减函数,在上是增函数,,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.21、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】
(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】(Ⅰ)由得再由正弦定理得因此,又因为,所以.(Ⅱ)当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.22、(1);(2).【解析】
(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 节日主题教育活动计划
- 二零二五年度林业树木清理与可持续利用合同3篇
- 2025版隧洞施工合同:隧道施工合同履约保证与履约担保协议3篇
- 二零二五年度钢材料国际采购合同标准范本
- 二零二五年度个人购房装修分期付款合同样本3篇
- 二零二五年度楼房居间买卖合同(含家具家电)4篇
- 二零二五年度个人对网络安全企业借款合同4篇
- 防水套管后补做法施工方案
- 二零二五年度钢厂废钢回收处理及环保设施建设合同
- 二零二五年度企业品牌形象托管授权合同3篇
- 《肝硬化的临床表现》课件
- 新增值税法学习课件
- DB23T 3838-2024商贸行业有限空间个体防护装备配备规范
- 《电子技术基础(第二版)》中职技工全套教学课件
- 五年级上册美术《传统门饰》课件
- DL∕T 1309-2013 大型发电机组涉网保护技术规范
- 城乡低保待遇协议书
- 华为HCIA-Storage H13-629考试练习题
- 辽宁省抚顺五十中学2024届中考化学全真模拟试卷含解析
- 2024年中国科学技术大学少年创新班数学试题真题(答案详解)
- 煤矿复工复产培训课件
评论
0/150
提交评论