版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市杨浦区交大附中数学高一下期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.2.若等差数列的前5项之和,且,则()A.12 B.13 C.14 D.153.设满足约束条件,则的最大值为()A.7 B.6 C.5 D.34.将图像向左平移个单位,所得的函数为()A. B.C. D.5.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点在线段的右上方.设,(),记,,分别考察的所有运算结果,则()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值6.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件7.已知函数,若对于恒成立,则实数的取值范围为()A. B. C. D.8.在等差数列中,若前项的和,,则()A. B. C. D.9.已知向量,,如果向量与平行,则实数的值为()A. B. C. D.10.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点到直线的距离为________.12.方程的解集是__________.13.若正实数,满足,则的最小值是________.14.函数的单调增区间是________.15.若,,则的值为______.16.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.18.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.19.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.20.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.21.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【详解】利用正弦定理和余弦定理得到:故选B【点睛】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.2、B【解析】试题分析:由题意得,,又,则,又,所以等差数列的公差为,所以.考点:等差数列的通项公式.3、A【解析】
考点:简单线性规划.专题:计算题.分析:首先作出可行域,再作出直线l0:y=-3x,将l0平移与可行域有公共点,直线y=-3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=-3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.解:如图,作出可行域,作出直线l0:y=-3x,将l0平移至过点A(3,-2)处时,函数z=3x+y有最大值1.故选A.点评:本题考查线性规划问题,考查数形结合思想.解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.4、A【解析】
根据三角函数的图象的平移变换得到所求.【详解】由已知将函数y=cos2x的图象向左平移个单位,所得的函数为y=cos2(x)=cos(2x);故选:A.【点睛】本题考查了三角函数的图象的平移;明确平移规律是解答的关键.5、B【解析】
设,用表示出,根据的取值范围,利用三角函数恒等变换化简,进而求得最值的情况.【详解】依题意,所以.设,则,所以,,所以,当时,取得最大值为.,所以,所以,当时,有最小值为.故选B.【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.6、D【解析】
不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.7、A【解析】
首先设,将题意转化为,即可,再分类讨论求出,解不等式组即可.【详解】,恒成立,等价于,恒成立.令,对称轴为.即等价于,即可.当时,得到,解得:.当时,得到,解得:.当时,得到,解得:.综上所述:.故选:A【点睛】本题主要考查二次不等式的恒成立问题,同时考查了二次函数的最值问题,分类讨论是解题的关键,属于中档题.8、C【解析】试题分析:.考点:等差数列的基本概念.9、B【解析】
根据坐标运算求出和,利用平行关系得到方程,解方程求得结果.【详解】由题意得:,,解得:本题正确选项:【点睛】本题考查向量平行的坐标表示问题,属于基础题.10、B【解析】
由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
根据点到直线的距离公式,代值求解即可.【详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【点睛】本题考查点到直线的距离公式,属基础题.12、【解析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.13、【解析】
将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.14、,【解析】
先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。15、【解析】
求出,将展开即可得解.【详解】因为,,所以,所以.【点睛】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.16、【解析】
本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【点睛】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.考点:1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和,(6)本题考查了等差数列绝对值求和,需讨论零点后分两段求和.18、(1)值域为.(2)【解析】
(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【详解】(1)因为,,所以.因为,所以,所以,所以,所以在区间上的值域为.(2)由,得,即.所以,解得,不等式的解集为.【点睛】本题主要考查了向量与三角函数的综合应用,还考查了运算求解的能力,属于中档题.19、(1)(2)【解析】
(1)由已知利用三角函数的定义可求,利用两角差的正切公式即可计算得解;(2)由已知可得,进而求出,最后利用两角和的正弦公式即可计算得解.【详解】(1)由三角函数定义得,因为,所以,因为,所以(2)·,∴∴,所以,所以【点睛】本题主要考查了同角三角函数基本关系式,两角差的正切公式,两角和的正弦公式,考查了计算能力和转化思想,属于基础题.20、见解析.【解析】
根据定义域,分别利用解析法,列表法,图像法表示即可.【详解】解:这个函数的定义域是数集.用解析法可将函数表示为,.用列表法可将函数表示为笔记本数12345钱数510152025用图象法可将函数表示为:【点睛】本题考查函数的表示方法,注意函数的定义域,是基础题.21、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年大学农业工程专业大学物理下册期末考试试题C卷-含答案
- 建筑工程项目管理中的施工现场管理与优化措施分析
- 石河子大学《信息技术教学技能训练》2022-2023学年第一学期期末试卷
- 石河子大学《土力学实验》2022-2023学年第一学期期末试卷
- 石河子大学《嵌入式系统原理与应用》2022-2023学年期末试卷
- 石河子大学《单片机原理及应用》2022-2023学年期末试卷
- 沈阳理工大学《运筹学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《西方近现代建筑史》2021-2022学年第一学期期末试卷
- 沈阳理工大学《汽车电器与电子控制技术》2022-2023学年期末试卷
- 沈阳理工大学《传感与测试技术》2022-2023学年第一学期期末试卷
- 马背上的民族蒙古族少数民族蒙古族介绍课件
- 工程图学(天津大学)智慧树知到期末考试答案章节答案2024年天津大学
- 农村户改厕施工协议书
- 当代社会政策分析 课件 第十一章 残疾人社会政策
- 2023年人教版中考物理专题复习-九年级全册简答题专题
- 家政公司未来发展计划方案
- ISO28000:2022供应链安全管理体系
- 当代艺术与传统文化的交流与融合
- 《配电网保护分级配置及整定技术规范》
- 企业档案管理办法培训
- 《室内设计基础》课件
评论
0/150
提交评论