陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题含解析_第1页
陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题含解析_第2页
陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题含解析_第3页
陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题含解析_第4页
陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省四校联考2025届高一数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与,若,则()A.2 B.1 C.2或-1 D.-2或12.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.3.已知圆截直线所得弦的长度为4,则实数a的值是A. B. C. D.4.在平行四边形中,为一条对角线,,,则=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)5.已知中,,,,则B等于()A. B.或 C. D.或6.数列的通项公式,其前项和为,则等于()A. B. C. D.7.若cosθ>0,且sin2θ<0,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.289.点关于直线的对称点的坐标为()A. B. C. D.10.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或9二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量夹角为,且,则__________.12.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________13.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面积是_______14.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C15.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________16.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.18.设等比数列的最n项和,首项,公比.(1)证明:;(2)若数列满足,,求数列的通项公式;(3)若,记,数列的前项和为,求证:当时,.19.已知等差数列中,,,数列中,,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.20.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.21.若,其为锐角,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由两直线平行的等价条件,即可得到本题答案.【详解】因为,所以,解得或.故选:C【点睛】本题主要考查利用两直线平行的等价条件求值.2、D【解析】

由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.3、B【解析】试题分析:圆化为标准方程为,所以圆心为(-1,1),半径,弦心距为.因为圆截直线所得弦长为4,所以.故选B.4、C【解析】试题分析:,故选C.考点:平面向量的线性运算.5、D【解析】

根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【点睛】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.6、B【解析】

依据为周期函数,得到,并项求和,即可求出的值。【详解】因为为周期函数,周期为4,所以,,故选B。【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。7、D【解析】试题分析:且,,为第四象限角.故D正确.考点:象限角.8、C【解析】

可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.9、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.10、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.12、【解析】

由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.13、【解析】

由已知中圆锥的侧面展开图为半圆且面积为S,我们易确定圆锥的母线长l与底面半径R之间的关系,进而求出底面面积即可得到结论.【详解】如图:设圆锥的母线长为l,底面半径为R若圆锥的侧面展开图为半圆则2πR=πl,即l=2R,又∵圆锥的侧面展开图为半圆且面积为S,则圆锥的底面面积是.故答案为.【点睛】本题考查的知识点是圆锥的表面积,根据圆锥的侧面展开图为半圆,确定圆锥的母线长与底面的关系是解答本题的关键.14、3【解析】

利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【点睛】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.15、(-∞,1)【解析】

由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.16、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.18、(1)证明见解析;(2);(3)证明见解析【解析】

(1)由已知且,利用等比数列的通项公式可得,利用等比数列的求和公式可证;

(2)由,可得,从而可得是等差数列,从而可求;(3)可得,利用错位相减法可得,通过计算得,得数列为单调递减数列,进而可证明.【详解】证明:(1)由已知且,所以,

所以,

即;

(2)由已知,所以,

所以,是首项为2,公差为1的等差数列,

所以数列的通项公式为;(3)当时,,,,,两式相减得:,,当时,,整理得:,故当时,数列为单调递减数列,故,故当时,.【点睛】本题主要考查了等比数列的通项公式及等比数列的求和公式的应用,利用递推公式构造等差数列,及等差数列的求和公式等知识的综合应用,属于公式的综合运用.19、(1)(2)【解析】试题分析:(1)对于求得首项和公差即可求得数列的通项公式,对于,利用递推关系求解数列的通项公式即可;(2)利用数列的特点错位相减求解数列的前n项和即可.试题解析:(I)①②①-②得,为等比数列,(II)由两式相减,得点睛:一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.20、(1),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论