版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省商洛市第3中学2025届高一数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.2.以点为圆心,且经过点的圆的方程为()A. B.C. D.3.设满足约束条件,则的最小值为()A.3 B.4 C.5 D.104.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π5.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A6.在中,,,其面积为,则等于()A. B. C. D.7.同时掷两枚骰子,所得点数之和为5的概率为()A. B. C. D.8.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F39.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.10.已知函数的最大值为,最小值为,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.已知等差数列的前n项和为,若,,,则________13.设函数,则的值为__________.14.若等比数列的各项均为正数,且,则等于__________.15.若数列满足,,则______.16.若存在实数,使不等式成立,则的取值范围是_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某科技创新公司在第一年年初购买了一台价值昂贵的设备,该设备的第1年的维护费支出为20万元,从第2年到第6年,每年的维修费增加4万元,从第7年开始,每年维修费为上一年的125%.(1)求第n年该设备的维修费的表达式;(2)设,若万元,则该设备继续使用,否则须在第n年对设备更新,求在第几年必须对该设备进行更新?18.已知直线l1:ax﹣y﹣2=0与直线l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1与l2互相垂直,求a的值:(2)若l1与l2相交且交点在第三象限,求a的取值范围.19.设.(1)用表示的最大值;(2)当时,求的值.20.已知函数,数列中,若,且.(1)求证:数列是等比数列;(2)设数列的前项和为,求证:.21.已知,,,求:的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.2、B【解析】
通过圆心设圆的标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.3、B【解析】
结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法4、B【解析】
由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【点睛】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.5、C【解析】
试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!6、A【解析】
先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.7、C【解析】
求出基本事件空间,找到符合条件的基本事件,可求概率.【详解】同时掷两枚骰子,所有可能出现的结果有:共有36种,点数之和为5的基本事件有:共4种;所以所求概率为.故选C.【点睛】本题主要考查古典概率的求解,侧重考查数学建模的核心素养.8、A【解析】
通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.9、D【解析】
根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.10、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.12、1【解析】
由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.13、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.14、50【解析】由题意可得,=,填50.15、【解析】
利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.16、;【解析】
不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)第9年【解析】
(1)将数列分为两部分,分别利用等差数列和等比数列公式得到答案.(2)当时,恒成立,当时,,判断是递增数列,计算,得到答案.【详解】(1)当时,数列是首项为20,公差为4的等差数列,;当时,数列是首项为,公比为的等比数列,又所以.因此第n年该设备的维修费的表达式因此为(2)设数列的前项和为,由等差及等比的求和公式得:当时,,此时恒成立,即该设备继续使用;当时,,此时因为,即所以是递增数列,又,故在第9年必须对该设备进行更新.【点睛】本题考查了数列的应用,意在考查学生利用数列知识解决问题的能力和应用能力.18、(1)a,或a=1(2)a>3【解析】
(1)由题意利用两条直线互相垂直的性质,求得的值;(2)联立方程组求出两条直线的交点坐标,再根据交点在第三象限,求出的取值范围.【详解】(1)∵直线l1:ax﹣y﹣2=0与直线l2:(3﹣2a)x+y﹣1=0,l1与l2互相垂直,∴a•(3﹣2a)+(﹣1)•1=0,求得a,或a=1.(2)若l1与l2相交且交点在第三象限,联立方程组,∵l1与l2相交,故a≠3,求得方程组的解为,∴,求得a>3.【点睛】本题主要考查两条直线互相垂直的性质,求两条直线的交点坐标,属于基础题.19、(1)(2)或【解析】
(1)化f(x)为sinx的二次函数,根据二次函数的性质,对a讨论求出函数最大值;(2)由M(a)=2求出对应的a值即可.【详解】(1),∵,∴.①当,即时,;②当,即时,;③当,即时,.∴(2)当时,(舍)或-2(舍);当时,;当时,.综上或.【点睛】本题主要考查了三角函数恒等变换的应用和二次函数的性质问题,考查了分段函数求值问题,是中档题.20、(1)见解析;(2)见解析【解析】
(1)将代入到函数表达式中,得,两边都倒过来,即可证明数列是等比数列;(2)由(1)得出an的通项公式,然后根据不等式<在求和时进行放缩法的应用,再根据等比数列求和公式进行计算,即可证出.【详解】(1)由函数,在数列中,若,得:,上式两边都倒过来,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴数列是以1为首项,1为公比的等比数列.(2)由(1),可知:=1n,∴an=,n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XX县有关农村部分计划生育家庭奖励扶助制度实施意见
- 《海关政策宣讲》课件
- 课题研究计划评语
- 高三化学教师工作计划高三化学备课工作计划
- 二年级学困生辅导计划
- 2024年秋季上学期班长工作计划
- 会计实习计划安排
- 大学学生会宣传部部长工作计划范文
- 2024机关后勤工作计划例文
- 部编二年级语文下册整册教学计划及各单元教学计划
- 医疗安全不良事件警示教育
- 《意外险险种培训》课件
- 《民族区域自治制度》课件
- 危险性较大的专项施工方案审批表
- 最小应急单元应急演练预案
- JGJ366-2015 混凝土结构成型钢筋应用技术规程
- 外研社英语教材(一年级起点)一年级下册知识点总结
- 家长会课件:六年级上学期家长会课件
- 江苏省昆山、太仓、常熟、张家港四市2023-2024学年八年级上学期期中阳光测试物理试题
- (4)-1.1 正确认识人的本质
- 大型纯碱厂家检修方案
评论
0/150
提交评论