版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省徐州市撷秀初级中学高一下数学期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正实数满足,且恒成立,则实数的取值范围为()A. B. C. D.2.下列函数中,在区间上是减函数的是()A. B. C. D.3.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则4.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c5.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直6.△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=A. B. C. D.7.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.圆与圆的位置关系是()A.内切 B.外切 C.相交 D.相离9.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆 B.1700辆 C.170辆 D.300辆10.已知,若,则等于()A. B.1 C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和是,且,则______.(写出两个即可)12.已知数列的前项和为,则其通项公式__________.13.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.14.如图,在△中,三个内角、、所对的边分别为、、,若,,为△外一点,,,则平面四边形面积的最大值为________15.已知,则____________.16.已知等差数列中,,,则该等差数列的公差的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.18.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.19.已知向量,向量,向量,记与的夹角为.(Ⅰ)求(Ⅱ)求向量与向量的夹角的取值范围.20.如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的,且与旧枝成120°,……,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(2)求第13阶段“黄金数学草”的高度;21.已知对任意,恒成立(其中),求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先利用基本不等求出的最小值,然后根据恒成立,可得,再求出a的范围.【详解】因为正实数x,y满足,,当且仅当,即时取等号,恒成立,所以只需,,,的取值范围为,故选:A.【点睛】本题主要考查不等式恒成立问题以及基本不等式求最值,解题时注意“一正、二定、三相等”的应用,本题属于中档题.2、C【解析】
根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.
在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.3、D【解析】
试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.4、D【解析】
根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.5、D【解析】略6、B【解析】
试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可详解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故选B.点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7、B【解析】
利用等式的性质或特殊值法来判断各选项中不等式的正误.【详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【点睛】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.8、B【解析】
由两圆的圆心距及半径的关系求解即可得解.【详解】解:由圆,圆,即,所以圆的圆心坐标为,圆的圆心坐标为,两圆半径,则圆心距,即两圆外切,故选:B.【点睛】本题考查了两圆的位置关系的判断,属基础题.9、B【解析】
由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【详解】由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为0.03+0.035+0.02×10=0.85∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有2000×0.85=1700(辆),故选B.【点睛】本题主要考查频率分布直方图的应用,属于中档题.直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.10、A【解析】
首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.12、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.13、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)14、【解析】
根据题意和正弦定理,化简得,进而得到,在中,由余弦定理,求得,进而得到,,得出四边形的面积为,再结合三角函数的性质,即可求解.【详解】由题意,在中,因为,所以,可得,即,所以,所以,又因为,可得,所以,即,因为,所以,在中,,由余弦定理,可得,又因为,所以为等腰直角三角形,所以,又因为,所以四边形的面积为,当时,四边形的面积有最大值,最大值为.故答案为:.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】
由已知结合同角三角函数基本关系式可得,然后分子分母同时除以求解.【详解】,.故答案为:.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.16、【解析】
根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.18、(1)(2)【解析】
(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【点睛】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由向量夹角公式可求,再由三角函数的诱导公式,化简得原式,利用三角函数的基本关系式,即可求解.(Ⅱ)作出图象,结合直角中,求得,进而得到,,即可求得向量与向量的夹角的取值范围.【详解】(Ⅰ)由向量夹角公式可求,又由,因为,所以,故原式=.(Ⅱ)如图所示,向量的终点在以点为圆心、半径为的圆上,是圆的两条切线,切点分别为,在直角中,,可得,即所以,因为,所以,,所以向量与向量的夹角的取值范围是.【点睛】本题主要考查了向量的数量积的运算公式,向量的夹角公式的应用,以及诱导公式的化简求值问题,其中解答中熟记向量的夹角公式和向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.20、(1)(2)【解析】
(1)根据示意图,计算出第阶段、第阶段生长的高度,即可求解出第阶段“黄金数学草”的高度;(2)考虑第偶数阶段、第奇数阶段“黄金数学草”高度的生长量之间的关系,构造数列,利用数列求和完成第阶段“黄金数学草”的高度的计算.【详解】(1)因为第一阶段:,所以第阶段生长:,第阶段的生长:,所以第阶段“黄金数学草”的高度为:;(2)设第个阶段生长的“黄金数学草”的高度为,则第个阶段生长的“黄金数学草”的高度为,第阶段“黄金数学草”的高度为,所以,所以数列按奇偶性分别成公比为等比数列,所以.所以第阶段“黄金数学草”的高度为:.【点睛】本题考查等比数列以及等比数列的前项和的实际应用,难度较难.处理数列的实际背景问题,第一步要能从实际背景中分离出数列的模型,然后根据给定的条件处理对应的数列计算问题,这对分析问题的能力要求很高.21、的最大值为.【解析】试题分析:利用二倍角公式,利用换元法,将原不等式转化为二次不等式在区间上恒成立,利用二次函数的零点分布进行讨论,从而得出的最大值,但是在对时的情况下,主要对二次函数的对称轴是否在区间进行分类讨论,再将问题转化为的条件下,求的最大值,试题解析:由题意知,令,,则当,恒成立,开口向上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产风险分级管控和隐患排查治理指导手册
- (范文)钻石首饰项目立项报告
- (2024)氮化硅陶瓷粉体生产建设项目可行性研究报告(一)
- 2022-2023学年天津市宝坻九中高二(上)期末语文试卷
- 2023年网络应用软件项目融资计划书
- 2023年胶基糖果中基础剂物质项目融资计划书
- 机械制图题库及答案
- 广东省茂名市高州市2024届九年级上学期期末考试数学试卷(含答案)
- 养老院老人生活照顾服务质量管理制度
- 养老院老人健康监测人员管理制度
- 国开本科《人文英语4》机考题库及答案
- 【课件】海-气相互作用+说课稿高二地理湘教版(2019)选择性必修1
- 2022年舞蹈学基础知识点重点
- GB/T 2007.3-1987散装矿产品取样、制样通则评定品质波动试验方法
- GB/T 196-2003普通螺纹基本尺寸
- GB/T 14456.3-2016绿茶第3部分:中小叶种绿茶
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
- 2023年山东省普通高中学业水平考试语文试题
- 挡土墙基本知识课件
- 2011年考研英语一试卷真题(后附答案详解)
- 幼儿游戏行为观察量表
评论
0/150
提交评论