版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市肃宁一中2025届高一下数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值域为A. B. C. D.2.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.323.如图,已知四面体为正四面体,分别是中点.若用一个与直线垂直,且与四面体的每一个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为().A. B. C. D.4.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)5.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或6.执行如图所示的程序框图,若输入的,则输出A. B. C. D.7.在中,角的对边分别是,,则的形状为A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形8.已知直线的倾斜角为,则()A. B. C. D.9.在0°到360°范围内,与角-130°终边相同的角是()A.50° B.130° C.170° D.230°10.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱二、填空题:本大题共6小题,每小题5分,共30分。11.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).12.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.13.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).14.已知(),则________.(用表示)15.已知,,若,则____16.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.18.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.20.在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.21.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用求函数的周期为,计算即可得到函数的值域.【详解】因为,,,因为函数的周期,所以函数的值域为,故选C.【点睛】本题考查函数的周期运算,及利用函数的周期性求函数的值域.2、B【解析】
由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.3、A【解析】
通过补体,在正方体内利用截面为平行四边形,有,进而利用基本不等式可得解.【详解】补成正方体,如图.∴截面为平行四边形,可得,又且可得当且仅当时取等号,选A.【点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.4、A【解析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.5、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.6、B【解析】
首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:,即.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.7、A【解析】
先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8、B【解析】
根据直线斜率与倾斜角的关系求解即可.【详解】因为直线的倾斜角为,故直线斜率.故选:B【点睛】本题主要考查了直线的倾斜角与斜率的关系,属于基础题.9、D【解析】
先表示与角-130°终边相同的角,再在0°到360°范围内确定具体角,最后作选择.【详解】因为与角-130°终边相同的角为,所以,因此选D.【点睛】本题考查终边相同的角,考查基本分析判断能力,属基本题.10、B【解析】
设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.76【解析】
将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12、【解析】
求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.13、45【解析】
直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.14、【解析】
根据同角三角函数之间的关系,结合角所在的象限,即可求解.【详解】因为,所以,故,解得,又,,所以.故填.【点睛】本题主要考查了同角三角函数之间的关系,三角函数在各象限的符号,属于中档题.15、【解析】
由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.16、【解析】
两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.【详解】圆与圆的方程相减得:,由圆的圆心,半径r为2,且圆心到直线的距离,则公共弦长为.故答案为.【点睛】此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,;当时,;当时,【解析】
(1)利用,时单独讨论.求解.
(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【点睛】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.18、(1);(2),.【解析】
(1)先求出公差和首项,可得通项公式;(2)由(1)可得前项和,由二次函数性质可得最小值(只要注意取正整数).【详解】(1)设的公差为,由题意得,,解得,.所以的通项公式为.(2)由(1)得因为所以当或时,取得最小值,最小值为-30.【点睛】本题考查等差数列的通项公式和前项和公式,方法叫基本量法.19、(1)或,(2)点P坐标为或.【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.20、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.21、(1)见解析(2)9或35或133【解析】
(1)分别写出和,做商
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西省安康市2024-2025学年高三上学期第一次质量联考政治试题(含答案)
- 安徽省合肥市六校联盟2024-2025学年高二上学期11月期中考试 政治(含答案)
- 左心耳围手术期护理
- 2024年度保险合同:某大型企业财产保险
- 2024年度二手住宅权属转移合同
- 2024年度施工合同:大型体育场馆施工建设合同
- 2024年度海洋工程建设项目承包合同
- 2024年度版权许可合同:影视公司与网络平台的内容授权协议
- 2024年度便利店危机管理加盟合同
- 2024年度北京市二手房买卖合同涉及的房屋交易纠纷处理机制
- 农村商业银行信贷档案管理办法
- 第三章-公共政策过程(修改)最终版.ppt课件
- 部编版五年级语文上册(精美)课件 25 古人谈读书
- 句子语法结构(单句)(课堂PPT)
- 现代女性如何兼顾事业和家庭的平衡PPT课件
- (工艺流程)铝合金熔炼工艺流程和操作工艺
- 幼儿园幼儿发展评价表93195
- 退休“中人”待遇核算—机关事业单位养老保险待遇计发工作培训(全省模板)课件
- 动物的采食量 (2)
- 第六节汽轮机级内损失及级效率
- (高清版)外墙饰面砖工程施工及验收规程JGJ126-2015
评论
0/150
提交评论