安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题含解析_第1页
安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题含解析_第2页
安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题含解析_第3页
安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题含解析_第4页
安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市黟县中学2025届高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列结论成立的是()A. B.C.的最小值为2 D.2.根据如下样本数据x

3

4

5

6

7

8

y

可得到的回归方程为,则()A. B. C. D.3.已知是奇函数,且.若,则()A.1 B.2 C.3 D.44.在区间内随机取一个实数a,使得关于x的方程有实数根的概率为()A. B. C. D.5.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π26.设集合,集合,则()A. B. C. D.7.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔64海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为()海里/小时.A. B.C. D.9.已知数列的前项和为,且,则()A. B. C. D.10.在中,角的对边分别是,若,且三边成等比数列,则的值为()A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,则,,从小到大排列为______12.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.13.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.14.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.15.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.16.记,则函数的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.18.如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.19.已知.(1)求的值;(2)求的值.20.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.21.在中,内角A,B,C所对的边分别为a,b,c,已知,,.(1)求边c的值;(2)求的面积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【点睛】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.2、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;3、C【解析】

根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.4、C【解析】

由关于x的方程有实数根,求得,再结合长度比的几何概型,即可求解,得到答案.【详解】由题意,关于x的方程有实数根,则满足,解得,所以在区间内随机取一个实数a,使得关于x的方程有实数根的概率为.故选:C.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力,属于基础题.5、B【解析】

根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.6、B【解析】

已知集合A,B,取交集即可得到答案.【详解】集合,集合,则故选B【点睛】本题考查集合的交集运算,属于简单题.7、C【解析】

在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、C【解析】

先求出的值,再根据正弦定理求出的值,从而求得船的航行速度.【详解】由题意,在中,由正弦定理得,得所以船的航行速度为(海里/小时)故选C项.【点睛】本题考查利用正弦定理解三角形,属于简单题.9、D【解析】

通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.10、C【解析】

先利用正弦定理边角互化思想得出,再利余弦定理以及条件得出可得出是等边三角形,于此可得出的值.【详解】,由正弦定理边角互化的思想得,,,,则.、、成等比数列,则,由余弦定理得,化简得,,则是等边三角形,,故选C.【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【点睛】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.12、【解析】试题分析:由题意得,解得,故答案为.考点:分层抽样.13、【解析】

设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.14、【解析】分析:分类讨论截距为0和截距不为零两种情况求解直线方程即可.详解:当截距为0时,直线的方程为,满足题意;当截距不为0时,设直线的方程为,把点代入直线方程可得,此时直线方程为.故答案为.点睛:求解直线方程时应该注意以下问题:一是根据斜率求倾斜角,要注意倾斜角的范围;二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论;三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.15、【解析】

作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【点睛】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。16、4【解析】

利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】

(1)由已知求得,可得,取即可求得;(2)由,得,可得数列是以为首项,以1为公差的等差数列,由此求得数列的通项公式,再由错位相减法求数列的前项和.【详解】解:(1),且,,,即.,取,得,即;(2)由,得,数列是以为首项,以为公差的等差数列,则.则.,,则,.【点睛】本题考查数列求和,训练了利用错位相减法求数列的前项和,属于中档题.18、(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1);(2)【解析】

试题分析:(1)利用正切的两角和公式求的值;(2)利用第一问的结果求第二问,但需要先将式子化简,最后变形成关于的式子,需要运用三角函数的倍角公式将化成单角的三角函数,然后分子分母都除以,然后代入的值即可.试题解析:(1)由(2)考点:1.正切的两角和公式;2.正余弦的倍角公式.20、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论