2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题含解析_第1页
2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题含解析_第2页
2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题含解析_第3页
2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题含解析_第4页
2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省呈贡一中高一数学第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别是.已知,,,则A. B. C. D.2.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.3.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.4.已知,,点在内,且,设,则等于()A. B.3 C. D.5.如图所示,在中,,点在边上,点在线段上,若,则()A. B. C. D.6.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.7.在等差数列an中,若a3+A.6 B.7 C.8 D.98.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.9.设等差数列an的前n项和为Sn,若a1>0,A.S10 B.S11 C.S10.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的前项和,其中为常数,则________12.已知,则__________.13.已知数列满足,,则_______;_______.14.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.15.已知,则的值为__________.16.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.18.已知是递增的等比数列,且,.(1)求数列的通项公式;(2)为各项非零的等差数列,其前n项和为,已知,求数列的前n项和.19.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.20.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的正半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.21.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.2、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、D【解析】

不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.4、B【解析】

先根据,可得,又因为,,所以可得:在轴方向上的分量为,在轴方向上的分量为,又根据,可得答案.【详解】,,

,,

在轴方向上的分量为,

在轴方向上的分量为,

,,

两式相比可得:.故选B.【点睛】.向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.5、B【解析】

本题首先可根据点在边上设,然后将化简为,再然后根据点在线段上解得,最后通过计算即可得出结果.【详解】因为点在边上,所以可设,所以,因为点在线段上,所以三点共线,所以,解得,所以,,故选B.【点睛】本题考查向量共线的相关性质以及向量的运算,若向量与向量共线,则,考查计算能力,是中档题.6、A【解析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.7、C【解析】

通过等差数列的性质可得答案.【详解】因为a3+a9=17【点睛】本题主要考查等差数列的性质,难度不大.8、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.9、C【解析】分析:利用等差数列的通项公式,化简求得a20+a详解:在等差数列an中,a则3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0点睛:本题考查了等差数列的通项公式,及等差数列的前n项和Sn的性质,其中解答中根据等差数列的通项公式,化简求得a20+10、D【解析】

根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据等比数列的前项和公式,求得,再结合极限的运算,即可求解.【详解】由题意,等比数列前项和公式,可得,又由,所以,所以,可得.故答案为:.【点睛】本题主要考查了等比数列的前项和公式的应用,以及熟练的极限的计算,其中解答中根据等比数列的前项和公式,求得的值,结合极限的运算是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】13、【解析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.14、15【解析】

根据球的半径,先求得球的体积;根据圆与等边三角形关系,设出的边长为,由面积关系表示出圆锥的体积;设拿出铁球后水面高度为,用表示出水的体积,由即可求得液面高度.【详解】因为铁球半径为,所以由球的体积公式可得,设的边长为,则由面积公式与内切圆关系可得,解得,则圆锥的高为.则圆锥的体积为,设拿出铁球后的水面为,且到的距离为,如下图所示:则由,可得,所以拿出铁球后水的体积为,由,可知,解得,即将铁球取出后容器中水的深度为15.故答案为:15.【点睛】本题考查了圆锥内切球性质的应用,球的体积公式及圆锥体积公式的求法,属于中档题.15、【解析】

利用诱导公式将等式化简,可求出的值.【详解】由诱导公式可得,故答案为.【点睛】本题考查利用诱导公式化简求值,在利用诱导公式处理化简求值的问题时,要充分理解“奇变偶不变,符号看象限”这个规律,考查运算求解能力,属于基础题.16、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根据点,的坐标即可求出,从而可求出;(Ⅱ)可以求出,根据即可得出,解出即可.【详解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.18、(1);(2)【解析】

(1){an}是递增的等比数列,公比设为q,由等比数列的中项性质,结合等比数列的通项公式解方程可得所求;(2)运用等差数列的求和公式和等差数列中项性质,求得bn=2n+1,再由数列的错位相减法求和,化简可得所求和.【详解】(1)∵是递增的等比数列,∴,,又,∴,是的两根,∴,,∴,.(2)∵,∴由已知得,∴∴,化简可得.【点睛】本题考查数列的通项和求和,等差等比数列的通项通常是列方程组解首项及公差(比),数列求和常见的方法有:裂项相消和错位相减法,考查计算能力,属于中等题.19、(1);(2)【解析】

(1)根据二次函数的单调性得在区间,单调递减,在区间单调递增,从得而得;(2)①当时,在区间上是单调函数,则,利用不等式的放缩法求得;②当时,对进行分类讨论,求得;从而求得k的最大值为.【详解】(1)当时,,结合图像可知,在区间,单调递减,在区间单调递增..(2)①当时,在区间上是单调函数,则,而,,,∴.②当时,的对称轴在区间内,则,又,(ⅰ)当时,有,,则,(ⅱ)当时,有,则,所以,对任意的都有,综上所述,时在区间的最大值为,所以k的最大值为.【点睛】本题考查一元二次函数的图象与性质、含参问题中的恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的完整性.20、(1)-1;(2)【解析】

(1)用表示出,然后利用诱导公式化简所求表达式,求得表达式的值.(2)根据点的横坐标即的值,求得的值,根据诱导公式求得的值,由此利用两角和与差的正弦公式,化简求得的值.【详解】解:(1)∵∴,∴(2)由已知点的横坐标为∴,,【点睛】本小题主要考查三角函数的定义,考查利用诱导公式化简求值,考查两角和与差的正弦公式以及同角三角函数的基本关系式,考查运算求解能力,属于中档题.21、(1);(2);(3),.【解析】

(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论