2025年中考数学专题69 数与式中的新定义问题(解析版)_第1页
2025年中考数学专题69 数与式中的新定义问题(解析版)_第2页
2025年中考数学专题69 数与式中的新定义问题(解析版)_第3页
2025年中考数学专题69 数与式中的新定义问题(解析版)_第4页
2025年中考数学专题69 数与式中的新定义问题(解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例题精讲例题精讲【例1】.定义一种新运算:,例如.若,则k=﹣2.解:由题意得,(﹣x﹣2)dx=k﹣1﹣2﹣1=﹣=﹣1,即﹣=﹣1,解得k=﹣2,故答案为:﹣2.变式训练【变1-1】.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果,则x的取值范围是()A.5≤x<7 B.5<x<7 C.5<x≤7 D.5≤x≤7解:由题意得:3≤<4,∴6≤x+1<8,∴5≤x<7,故选:A.【变1-2】.规定:符号[x]叫做取整符号,它表示不超过x的最大整数,例如:[5]=5,[2.6]=2,[0.2]=0.现在有一列非负数a1,a2,a3,…,已知a1=10,当n≥2时,an=an﹣1+1﹣5([]﹣[]),则a2022的值为11.解:∵a1=10,∴a2=a1+1﹣5([]﹣0)=11,a3=a2+1﹣5([]﹣[])=12,a4=a3+1﹣5([]﹣[])=13,a5=a4+1﹣5([]﹣[])=14,a6=a5+1﹣5([1]﹣[])=10,…∴a1,a2,a3,…,每5个结果循环一次,∵2022÷5=404…2,∴a2022=a2=11,故答案为:11.【例2】.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi的数叫做复数,其中a叫做这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整数的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=4+6+i﹣2i=10﹣i(2﹣i)(3﹣i)=6﹣2i﹣3i+i2=6﹣5i﹣1=5﹣5i根据以上信息计算(1+2i)(2﹣i)+(2﹣i)2=7﹣i.解:(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4﹣4i+i2=2+3i+2=7﹣i.故答案为:7﹣i.变式训练【变2-1】.贾宪是生活在北宋年间的数学家,著有《黄帝九章算法细草》《释锁算书》等书,但是均已失传.所谓“贾宪三角”指的是如图所示的由数字所组成的三角形,称为“开方作法本源”图,也称为“杨辉三角”.贾宪发明的“开方作法本源“图作用之一,是为了揭示二项式(a+b)n(n=1,2,3,4,5)展开后的系数规律,即(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.则二项式(a+b)n(n为正整数)展开后各项的系数之和为()A.2n﹣1+1 B.2n﹣1+2 C.2n D.2n+1解:根据题意得:当n=1时,展开后各项的系数之和为:1+1=21,当n=2时,展开后各项的系数之和为:1+2+1=22,当n=3时,展开后各项的系数之和为:1+3+3+1=23,当n=4时,展开后各项的系数之和为:1+4+6+4+1=24,当n=5时,展开后各项的系数之和为:1+5+10+10+5+1=25,当n=6时,展开后各项的系数之和为:1+6+15+20+15+6+1=26,∴猜想当n=n时,展开后各项的系数之和为:2n,故选:C.【变2-2】.已知n行n列(n≥2)的数表中,对任意的i=1,2,…,n,j=1,2,…,n,都有aij=0或1.若当ast=0时,总有(a1t+a2t+…+ant)+(as1+as2+…+asn)≥n,则称数表A为典型表,此时记表A中所有aij的和记为Sn.(1)若数表,,其中典型表是C;(2)典型表中S5的最小值为13.解:(1)数表B中a12=0,而(a12+a22+a32)+(a11+a12+a13)=0+0+1+0+0+1=2<3,∴数表B不是典型表;对于数表C中,当ast=0时,总有(a1t+a2t+…+ant)+(as1+as2+…+asn)≥n,∴数表C是典型表;故答案为:C.(2)若典型表中S5有最小值,即典型表A中的1最少且当ast=0时,总有(a1t+a2t+…+ant)+(as1+as2+…+asn)=n.则A=或A中,则S5的最小值为13.故答案为:13.1.对任意两个实数a,b定义两种运算:a⊕b=,a⊗b=,并且定义运算顺序仍然是先做括号内的,例如:(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=3⊗2=2,则等于()A. B.3 C. D.2解:由题意得:=⊗=⊗3=,故选:C.2.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中较小的值,如Min{2,4}=2,按照这个规定,方程Min{}=的解为()A.1或3 B.1或﹣3 C.1 D.3解:分两种情况:当x>0时,<,∵Min{}=,∴=﹣1,1=4﹣x,解得:x=3,检验:当x=3时,x≠0,∴x=3是原方程的根;当x<0时,>,∵Min{}=,∴=﹣1,3=4﹣x,解得:x=1,不符合题意,舍去,综上所述:方程Min{}=的解为3,故选:D.3.定义:如果ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记做x=logaN.例如:因为72=49,所以log749=2;因为53=125,所以log5125=3.则下列说法正确的个数为()①log61=0;②log323=3log32;③若log2(3﹣a)=log827,则a=0;④log2xy=log2x+log2y(x>0,y>0).A.4 B.3 C.2 D.1解:∵60=1,∴log61=0,说法①符合题意;由于dm•dn=dm+n,设M=dm,N=dn,则m=logdM,n=logdN,于是logd(MN)=m+n=logdM+logdN,说法④符合题意;则log323=log3(2×2×2)=log32+log32+log32=3log32,说法②符合题意;设p=logab,则ap=b,两边同时取以c为底的对数,,则plogca=logcb,所以p=,即,则=log23,∵log2(3﹣a)=log827=log23,∴a=0,说法③符合题意;故选:A.4.我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2,请你计算的值为20.解:=(﹣2)×(﹣9)﹣(﹣)×4=18﹣(﹣2)=18+2=20,故答案为:20.5.对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+1)◎(m﹣2)=16,则m=3或﹣2.解:∵a◎b=(a+b)2﹣(a﹣b)2=(a+b+a﹣b)(a+b﹣a+b)=4ab,∴(m+1)◎(m﹣2)=4(m+1)(m﹣2)=4(m2﹣m﹣2)=16,整理得m2﹣m﹣6=0,解得m=3或m=﹣2,故答案为:3或﹣2.6.设n为正整数,记n!=1×2×3×4×…×n(n≥2),1!=1,则+++…++=1﹣.解:+++…++=(1﹣)+(﹣)+()+…+(﹣)=1﹣,故答案为:1﹣.7.新定义:任意两数m,n,按规定y=﹣m+n得到一个新数y,称所得新数y为数m,n的“愉悦数”.则当m=2x+1,n=x﹣1,且m,n的“愉悦数”y为正整数时,正整数x的值是2.解:当m=2x+1,n=x﹣1,且y为数m,n的“愉悦数”时,y=﹣(2x+1)+(x﹣1)=﹣+====+=﹣x+1﹣,∵x和y均为正整数,∴1<x<4,当x=2时,y=1,当x=3时,y=﹣(不合题意,舍去),故答案为:2.8.对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式23=8可以转化为对数式3=log28,对数式2=log636,可以转化为指数式62=36.计算log39+log5125﹣log232=0.解:log39+log5125﹣log232=2+3﹣5=0.故答案为:0.9.对于正整数m,我们规定:若m为奇数,则f(m)=3m+3;若m为偶数,则f(m)=.例如f(5)=3×5+3=18,f(8)==4.若m1=1,m2=f(m1),m3=f(m2),m4=f(m3),…,依此规律进行下去,得到一列数m1,m2,m3,m4,…,mn,…(n为正整数),则m1+m2+m3+…+m2021=14140.解:根据题意得:m1=1,m2=f(m1)=f(1)=6,m3=f(m2)=f(6)=3,m4=f(m3)=f(3)=12,m5=f(m4)=f(12)=6,m6=f(m5)=f(6)=3,m7=f(m6)=f(3)=12,m8=f(m7)=f(12)=6,m9=f(m8)=f(6)=3,......m2021=6,m2022=3,2022÷3=674,∴m1+m2+m3+…+m2021=(6+3+12)×(674﹣1)+6+1=14140.故答案为:14140.10.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序数对(a,b)为点P的斜坐标.(1)点P(x,y)关于原点对称的点的斜坐标是(﹣x,﹣y);(2)在某平面斜坐标系中,已知θ=60°,点P的斜坐标为(2,4),点N与点P关于x轴对称,则点N的斜坐标是(6,﹣4).解:(1)点P(x,y)关于原点对称的点的斜坐标(﹣x,﹣y),故答案为:(﹣x,﹣y);(2)作P点关于x轴的对称点N,连接PN交x轴于点F,作NC∥x轴交y轴于C点,作ND∥y轴交x轴于D点,∵PA∥BC∥ND,∴∠PAF=∠θ=∠FDN=60°,∵PF=FN,∠PFA=∠DFN=90°,∴△PAF≌△NDF(AAS),∴PA=DN,AF=FD,∵点P的斜坐标为(2,4),∴OA=BP=2,PA=BO=4,∴DN=4,∵∠PAF=60°,∴AF=DF=4•cos60°=2,∴AD=4,∴OD=2+4=6,∴N(6,﹣4),故答案为:(6,﹣4).11.欧拉是18世纪瑞士著名的数学家,他的贡献不仅遍及高等数学的各个领域,在初等数学中也留下了他的足迹.下面是关于分式的欧拉公式:=(其中a,b,c均不为零,且两两互不相等).(1)当r=0时,常数p的值为0.(2)利用欧拉公式计算:=6063.解:(1)当r=0时,=++=﹣+=0,∴p=0,故答案为:0;(2)当a=2022,b=2021,c=2020,r=3时,=2022+2021+2020=6063,故答案为:6063.12.任何一个正整数n都可以进行这样的分解:(s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:①F(2)=;②F(48)=;③F(n2+n)=;④若n非0整数,则F(n2)=1,其中正确说法的是①③④(将正确答案的序号填写在横线上).解:∵2=1×2,∴F(2)=,故语句①符合题意;∵48=1×48=2×24=3×16=4×12=6×8,∴F(48)==,故语句②不符合题意;∵n2+n=n(n+1),∴F(n2+n)=,故语句③符合题意;∵n2=n×n,∴F(n2)==1,故语句④符合题意,故答案为:①③④.13.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)min{sin30°,cos60°,tan45°};(2)若M{﹣2x,x2,3}=2,求x的值.解:(1)min{sin30°,cos60°,tan45°}=min{,,1}=;(2)∵M{﹣2x,x2,3}=2,∴=2,整理得:x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,x=3或x=﹣1,∴x的值为3或﹣1.14.定义为二阶行列式,规定它的运算法则为:=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)求的值.(2)若=20,求m的值.解:(1)∵=ad﹣bc,∴=20172﹣2018×2016=20172﹣(2017+1)×(2017﹣1)=20172﹣20172+1=1;(2)∵=ad﹣bc,=20,∴(m+2)(m+2)﹣(m﹣2)(m﹣2)=20,解得m=.15.材料:对于一个四位正整数m,如果满足百位上数字的2倍等于千位与十位的数字之和,十位上数字的2倍等于百位与个位的数字之和,那么称这个数为“相邻数”.例如:∵3579中,2×5=3+7=10,7×2=5+9=14,∴3579是“相邻数”.(1)判断7653,3210是否为“相邻数”,并说明理由;(2)若四位正整数n=1000a+100b+10c+d为“相邻数”,其中a,b,c,d为整数,且1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,设F(n)=2c,G(n)=2d﹣a,若为整数,求所有满足条件的n值.解:(1)7653不是“相邻数”;3210是“相邻数”,∵7653中,6×2=7+5=12,5×2=10,6+3=9,10≠9,∴7653不是“相邻数”;∵3210中,2×2=3+1=4,1×2=2+0=2,∴3210是“相邻数”;(2)∵四位正整数n=1000a+100b+10c+d为“相邻数”,∴2b=a+c,2c=b+d,∵F(n)=2c,G(n)=2d﹣a,∴=,∵1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,∴8≤2a+3c+6≤5,∴2a+3c+6=17,34,51,①2a+3c=11时,a=1,c=3,b=2,d=4,此时n=1234,②2a+3c=28时,a=8,c=4,b=6,d=2,此时n=8642,③2a+3c=45时,a=9,c=9,b=9,d=9,此时n=9999,综上所述,所有满足条件的n的值为1234,8642,9999.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的相关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a+b)5展开式共有6项,系数和为32.(2)求(2a﹣1)5的展开式;(3)利用表中规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1(不用表中规律计算不给分);(4)设(x+1)17=a17x17+a16x16+…+a1x+a0,则a1+a2+a3+…+a16+a17的值为217﹣1.解:(1)根据图表中的规律,可得:(a+b)5展开式共有6项,系数和为1+5+10+10+5+1=32,故答案为:6,32;(2)(2a﹣1)5=25a5+5×24a4(﹣1)+10×23a3(﹣1)2+10×22a2(﹣1)3+5×2a(﹣1)4+(﹣1)5=32a5﹣80a4+80a3﹣40a2+10a﹣1;(3)根据图表中数据的规律可以发现:25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5,∴25﹣5×24+10×23﹣10×22+5×2﹣1=1;(4)∵(x+1)17=a17x17+a16x16+…+a1x+a0,∴当x=1时,(1+1)17=a0+a1+a2+a3+…+a16+a17,当x=0时,(0+1)17=a0=1,∴217=1+a1+a2+a3+…+a16+a17,∴a1+a2+a3+…+a16+a17的值为217﹣1.故答案为:217﹣1.17.若规定f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),且m,n为正整数,例如f(3,1)=3,f(4,2)=4×5,f(5,3)=5×6×7.(1)计算f(4,3)﹣f(3,4);(2)试说明:;(3)利用(2)中的方法解决下面的问题,记a=f(1,2)+f(2,2)+f(3,2)+…+f(27,2),b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3).①a,b的值分别为多少?②试确定ab的个位数字.(1)解:f(4,3)﹣f(3,4)=4×5×6﹣3×4×5×6=4×5×6×(1﹣3)=﹣2×4×5×6=﹣240;(2)证明:∵f(n,m)=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),[f(n,m+1)﹣f(n﹣1,m+1)]=×[n×(n+1)×(n+2)×(n+3)×…×(n+m)﹣(n﹣1)×n×(n+1)×(n+2)×(n+3)×…×(n﹣1+m+1﹣1)]=[n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1)×(m+1)]=n×(n+1)×(n+2)×(n+3)×…×(n+m﹣1),∴;(3)解:①∵a=f(1,2)+f(2,2)+f(3,2)+…+f(27,2)=[f(1,3)﹣f(0,3)+f(2,3)﹣f(1,3)+f(3,3)﹣f(2,3)+…+f(27,3)﹣f(26,3)]=[f(27,3)﹣f(0,3)]=×27×28×29=7308,b=f(1,3)+f(2,3)+f(3,3)+…+f(11,3)=[f(1,4)﹣f(0,4)+f(2,4)﹣f(1,4)+f(3,4)﹣f(2,4)+…+f(11,4)﹣f(10,4)]=[f(11,4)﹣f(0,4)]=×11×12×13×14=6006;②ab=73086006,∵61的个位数字是8,82的个位数字是8,4,2,6循环,∵6006÷4=1501……1,∴ab的个位数字是8.18.请阅读以下材料,解决问题.我们知道:在实数体系中,一个实数的平方不可能为负数,即a2≥0.但是,在复数体系中,如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a、b为实数)的数就叫做复数,a叫做这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似,例如计算:(3+i)i=3i+i2=3i﹣1(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5=3i;若两个复数,它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.根据材料回答:(1)填空:①(2+i)(3i﹣1)=5i﹣5;②将m2+9(m为实数)因式分解成两个复数的积:m2+9=(m+3i)(m﹣3i);(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)2022的值;(3)已知(a+i)(b+i)=2﹣4i,求(a2﹣b2)(i2+i3+i4+…+i2023)的值.解:(1)①(2+i)(3i﹣1)=6i﹣2+3i2﹣i=5i﹣2﹣3=5i﹣5,故答案为:5i﹣5;②m2+9=(m+3i)(m﹣3i),故答案为:(m+3i)(m﹣3i);(2)(1+2i)2=1+4i+4i2=﹣3+4i,∵a+bi是(1+2i)2的共轭复数,∴a=﹣3,b=﹣4,∴(b﹣a)2022=(﹣4+3)2022=1;(3)∵(a+i)(b+i)=ab+(a+b)i﹣1=2﹣4i,∴2=ab﹣1,a+b=﹣4,∴ab=3,a+b=﹣4,∴a﹣b=±2,∵i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,…,∴in的运算结果﹣1,﹣i,1,i循环出现,∵(2023﹣1)÷4=505…2,∴i2+i3+i4+…+i2023=﹣1﹣i,当a﹣b=2时,(a2﹣b2)(i2+i3+i4+…+i2023)=﹣8(﹣1﹣i)=8+8i;当a﹣b=﹣2时,(a2﹣b2)(i2+i3+i4+…+i2023)=8(﹣1﹣i)=﹣8﹣8i;综上所述:(a2﹣b2)(i2+i3+i4+…+i2023)的值为8+8i或﹣8﹣8i.19.式子“1+2+3+4+…+100”表示从1开始的连续100个正整数的和,由于上述式子比较长,书写不方便,为了简便起见,可以将上述式子表示为,这里“∑”是求和的符号.例如“1+3+5+7+…+99”用“∑”可以表示为,“13+23+33+…+103”用“∑”可以表示为.(1)把写成加法的形式是12+22+32+42+52+62;(2)“2+4+6+8+…+100”用“∑”可以表示为2n;(3)计算:.解:(1)=12+22+32+42+52+62,故答案为:12+22+32+42+52+62;(2)2+4+6+8+…+100=2n,故答案为;2n;(3)()=+++...+=1﹣+﹣+﹣+﹣+...+﹣=1﹣=.20.好学的小贤同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(﹣6)+2×(﹣6)×4+3×4×5=﹣3,即一次项为﹣3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x﹣5)(3x+1)(5x﹣3)所得多项式的一次项系数为17.(2)若计算(x2+x﹣1)(x2﹣2x+a)(2x+3)所得多项式的一次项系数为2,求a的值;(3)若(x+1)2022=a0x2022+a1x2021+a2x2020+…+a2021x+a2022,则a2021=2022.解:(1)(x﹣5)(3x+1)(5x﹣3)的一次项系数为:1×1×(﹣3)+3×(﹣5)×(﹣3)+5×(﹣5)×1=﹣3+45

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论