2025年中考数学专题63 二次函数背景下的倍、半角角度问题(解析版)_第1页
2025年中考数学专题63 二次函数背景下的倍、半角角度问题(解析版)_第2页
2025年中考数学专题63 二次函数背景下的倍、半角角度问题(解析版)_第3页
2025年中考数学专题63 二次函数背景下的倍、半角角度问题(解析版)_第4页
2025年中考数学专题63 二次函数背景下的倍、半角角度问题(解析版)_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例题精讲例题精讲【例1】.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴交于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,∵S△AEC=AE×OC=AC×EF,∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,)或(﹣,﹣).变式训练【变1-1】.如图,在平面直角坐标系中,抛物线y=ax2+x+c交x轴于点A、点B,交y轴于点C.直线y=﹣x+2经过于点C、点B,(1)求抛物线的解析式;(2)点D为第一象限抛物线上一动点,过点D作y轴的平行线交线段BC于点E,交x轴于点Q,当DE=5EQ时,求点D的坐标;(3)在(2)的条件下,点M为第二象限抛物线上一动点,连接DM,DM交线段OC于点H,点F在线段OB上,连接HF、DF、DC、DB,当HF=,∠CDB=2∠MDF时,求点M的坐标.解:(1)针对于直线y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=ax2+x+c中,得∴,∴抛物线的解析式为y=﹣x2+x+2;(2)如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,设点D坐标为(m,﹣m2+m+2),∵DE⊥x轴交BC于E,直线BC的解析式为y=﹣x+2,∴D(m,﹣m+2),∴DE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,DQ=﹣m+2,∵DE=5EQ,∴﹣m2+m=5(﹣m+2),∴m=3或m=4(点B的横坐标,舍去),∴D(3,3);(3)如图2,由(2)知,D(3,3),由(1)知,B(4,0),C(0,2),∴DB=,DC=,BC=2,∴DC=DB,DB2+DC2=BC2,∴△BDC是等腰直角三角形,∴∠BDC=90°,∵BDC=2∠FDM=90°,∴∠FDM=45°,过点D作DP⊥y轴于P,则DQ=DP,OP=3,∴CP=1=BQ,∴△DPC≌△DQB(SAS),在CP的延长线取一点G,使PG=QF=n,∴OF=3﹣n,OG=3+n,∴△DPG≌△DQF(SAS),∴DG=DF,∠PDG=∠QDF,∴∠FDG=∠PDG+∠PDF=∠QDF+∠PDG=∠PDQ=90°∴∠GDM=90°﹣∠FDM=45°=∠GDM,∵DH=DH,∴△GDH≌△FDH(SAS),∴GH=FH=,∴OH=OG﹣GH=3+n﹣=n+,在Rt△HOF中,根据勾股定理得,(n+)2+(3﹣n)2=,∴n=1或n=(此时,OH=n+=2,所以点H与点C重合,舍去),∴H(0,),∵C(3,3),∴直线CH的解析式为y=x+①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②解得,或(由于点M在第二象限,所以舍去),∴M(﹣,).【例2】.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3①;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S四边形ACPB=S△ABC+S△PCB,∵S△ABC是常数,故四边形面积最大,只需要S△PCB最大即可,S△PCB=×OB×PH=×4(x﹣3﹣x2+x+3)=﹣x2+6x,∵﹣<0,∴S△PCB有最大值,此时,点P(2,﹣);(3)过点B作∠ABC的角平分线交y轴于点G,交抛物线于M′,设∠MBC=∠ABC=2α,过点B在BC之下作角度数为α的角,交抛物线于点M,过点G作GK⊥BC交BC于点K,延长GK交BM于点H,则GB=BH,BC是GH的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=GK=,GH=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BG的表达式为:y=x﹣…③联立①②并整理得:27x2﹣135x+100=0,解得:x=或4(舍去4),则点M(,﹣);联立①③并解得:x=﹣,故点M′(﹣,﹣);故点M(,﹣)或(﹣,﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求抛物线的解析式;(2)点P是抛物线上一点,设P点的横坐标为m.①当点P在第一象限时,过点P作PD⊥x轴,交BC于点D,过点D作DE⊥y轴,垂足为E,连接PE,当△PDE和△BOC相似时,求点P的坐标;②请直接写出使∠PBA=∠ABC的点P的坐标.解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,∴,解得,,∴抛物线的解析式为:;(2)令x=0,得=4,∴C(0,4),∴OC=4,∵B(3,0),∴OB=3,设直线BC的解析式为y=kx+n(k≠0),则,解得,∴直线BC的解析式为:y=,设P(m,),则D(m,),∴DP=,DE=m,∴,∵∠BOC=∠PDE=90°,∴当△PDE和△BOC相似时,有两种情况:当△PDE∽△BOC时,则,即=,解得,m=,∴P(,);当△PDE∽△COB时,则,即=,解得,m=2,∴P(2,4).综上,当△PDE和△BOC相似时,点P的坐标(,)或(2,4);②过B作BP平分∠ABC,交抛物线于点P,交OC于点M,过M作MN⊥BC于点N,如图1,则∠PBA=∠ABC,OM=MN,在Rt△BOM和Rt△BNM中,,∴Rt△BOM≌Rt△BNM(HL),∴BN=BO=3,设OM=t,则MN=MO=t,CM=4﹣t,CN=BC﹣BN=﹣3=2,∵MN2+CN2=MC2,∴t2+22=(4﹣t)2,∴t=,∴M(0,),设BM的解析式为:y=mx+(m≠0),代入B(3,0)得,m=,∴直线BM的解析式为:y=﹣,解方程组得,,,∴P(,),取M(0,)关于x轴的对称点,K(0,﹣),连接BK,延长BK,交抛物线于点P',如图2所示,则∠ABP=∠ABC,设直线BK的解析式为y=px(p≠0),代入B(3,0)得,p=,∴直线BK的解析式为:y=,解方程组得,,∴P'(,),综上,使∠PBA=∠ABC的点P的坐标为(,)或(,).【例3】.已知如图,抛物线y=ax2+bx﹣4(a≠0)交x轴于A、B两点(A点在B点的左侧),交y轴于点C.已知OA=OC=2OB.(1)求抛物线的解析式;(2)已知直线y=2x+m,若直线与抛物线有且只有一个交点E,求△ACE的面积;(3)在(2)的条件下,抛物线上是否存在点P,使∠PAB=∠EAC,若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)对于抛物线y=ax2+bx﹣4,令x=0,则y=﹣4,∴C(0,﹣4),∴OC=4,∵OA=OC=2OB,∴OA=4,OB=2,∴A(﹣4,0),B(2,0),∵点A,B在抛物线y=ax2+bx﹣4上,∴,∴,∴抛物线的解析式为y=x2+x﹣4;(2)由(1)知,抛物线的解析式为y=x2+x﹣4①,∵直线y=2x+m②与抛物线有且只有一个交点E,联立①②得,,∴x2﹣x﹣(4+m)=0,∴△=1+4×(4+m)=0,∴m=﹣,∴x2﹣x﹣=0,∴x1=x2=1,∴E(1,﹣),∴直线AE的解析式为y=﹣x﹣2如图1,记直线AE与y轴的交点为F,则F(0,﹣2),∴S△ACE=CF×|xE﹣xA|=×2×|1﹣(﹣4)|=5;(3)由(2)知,E(1,﹣),Ⅰ、当点P在x轴上方时,如图2,将线段AE以点E为旋转中心顺时针旋转90°得到线段EG,连接AG,则∠EAG=45°,在Rt△AOC中,OA=OC,∴∠OAC=45°=∠EAG,∴∠CAE=∠OAG,∴点P是AG与抛物线的交点,过点E作MN∥x,过点A作AM⊥MN于M,过点G作GN⊥MN于G,∵A(﹣4,0),E(1,﹣),∴AM=,ME=5,∴∠AME=∠ENG=90°,∴∠MAE+∠AEM=90°,由旋转知,AE=EG,∠AEG=90°,∴∠AEM+∠NEG=90°,∴∠MAE=∠NEG,∴△AME≌△ENG(AAS),∴EN=AM=,GN=ME=5,∴N(,﹣),G(,),∴直线AG的解析式为y=x+③,∵抛物线的解析式为y=x2+x﹣4④,联立③④解得,或,∴P(,),Ⅱ、由Ⅰ知,点G的坐标为G(,),N(,﹣),∴点G与点N关于x轴对称,∴点P是直线AN与抛物线的交点,∵A(﹣4,0),∴直线AN的解析式为y=﹣x﹣⑤,联立④⑤,解得,或,∴P(,﹣),即满足条件的点P的坐标为P(,)或(,﹣).变式训练【变3-1】.如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.解:(1)把C(0,﹣3)代入y=a(x+1)(x﹣3),得﹣3a=﹣3,解得a=1,所以抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)当点P在直线BC的下方时,如图1,过点B作BE⊥BC交CP的延长线于点E,过点E作EM⊥x轴于点M,∵y=(x+1)(x﹣3),∴y=0时,x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴,∵OB=OC=3,∴∠ABC=45°,BC=3,∵∠ACO=∠PCB,∴tan,∴BE=,∵∠CBE=90°,∴∠MBE=45°,∴BM=ME=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得:,∴直线CE的解析式为,∴,解得,∴,当点P在直线BC的上方时,过点B作BF⊥BC交CP于点F,如图2,同理求出BF=,FN=BN=1,∴F(2,1),求出直线CF的解析式为y=2x﹣3,∴,解得:x1=0,x2=4,∴P(4,5).综合以上可得点P的坐标为(4,5)或();(3)∵直线l:y=kx﹣k+2,∴y﹣2=k(x﹣1),∴x﹣1=0,y﹣2=0,∴直线y=kx﹣k+2恒过定点H(1,2),如图3,连接BH,当BH⊥直线l时,点B到直线l的距离最大时,求出直线BH的解析式为y=﹣x+3,∴k=1,∴直线l的解析式为y=x+1,∴,解得:,,∴E(﹣1,0),F(4,5),∴=10.1.如图,已知直线AB:y=x﹣3与x、y轴分别交于A、B两点;抛物线y=x2﹣2x﹣m与y轴交于C点,与线段AB交于D、E两点(D在E左侧)(1)若D、E重合,求m值;(2)连接CD、CE,若∠BCD=∠BEC,求m值;(3)连接OD,若OD=CE,求m值.解:(1)把y=x﹣3代入抛物线y=x2﹣2x﹣m中,得x2﹣3x+3﹣m=0,∵D、E重合,∴△=9﹣4(3﹣m)=4m﹣3=0,∴m=;(2)∵y=x﹣3与x、y轴分别交于A、B两点;抛物线y=x2﹣2x﹣m与y轴交于C点,∴B(0,﹣3),C(0,﹣m),∴BC=3﹣m,解方程组得,,,∴,,∴BD=,BE=,∵∠BCD=∠BEC,∠CBD=∠EBC,∴△BCD∽△BEC,∴,即BC2=BD•BE,∴,解得,m=1或3,当m=3时,B与C重合,不符合题意,舍去,∴m=1;(3)∵OD=CE,∴OD2=CE2,∴+,即,解得,m=0,或m=5,当m=0时,无意义,应舍去,当m=5+时,C点在B点下方,不合题意,舍去,∴m=5﹣,2.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,∵点A位于点B的左侧,∴点A坐标为(a,0),点B坐标为(1,0),当x=0时,y=a,∴点C坐标为(0,a),∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4,∵a<0,∴a=﹣3,∴y=x2+2x﹣3;(2)设直线BC:y=kx﹣3,则0=k﹣3,∴k=3;①当点P在x轴上方时,直线OP的函数表达式为y=3x,则,∴,,∴点P坐标为;②当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则∴,,∴点P坐标为,综上可得点P坐标为或;(3)过点A作AE⊥BM于点E,过点N作NF⊥BM于点F,设AM与BN交于点G,延长MN与x轴交于点H;∵AB=4,点M到x轴的距离为d,∴S△AMB=×AB×d=×4×d=2d,∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四边形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三点的横坐标相同,且BH=MH,∵M是抛物线上一点,∴可设点M的坐标为(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴点N的横坐标为﹣4,可设直线AC:y=kx﹣3,则0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,当x=﹣4时,y=﹣(﹣4)﹣3=1,∴点N的坐标为(﹣4,1).3.如图1,抛物线C1:y=ax2+c的顶点为A,直线l:y=kx+b与抛物线C1交于A,C两点,与x轴交于点B(1,0),且OA=2OB,S△OAC=4.(1)求直线l的解析式;(2)求抛物线C1与x轴的交点坐标;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C,且抛物线C的顶点为P,交x轴负半轴于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.解:(1)∵B(1,0),∴OB=1,∵OA=2OB,∴OA=2,∴A(0,﹣2),设直线l的解析式为y=kx+b,∴,解得,∴直线l的解析式为y=2x﹣2;(2)∵S△OAC=4,∴,∴xC=4,∴y=8﹣2=6,∴C(4,6),将A(0,﹣2),C(4,6)代入y=ax2+c,∴,解得,∴抛物线C1与的解析式为y=;令y=0,,解得x=±2,∴抛物线C1与x轴的交点坐标为(2,0),(﹣2,0).(3)设抛物线C表达式为:y=x2﹣2﹣m,设点M(n,0),则n2﹣2﹣m=0,抛物线C表达式为:y=x2﹣n2…③,联立②③并解得:x=2﹣n或2+n,则点N(2﹣n,2﹣2n),则NQ=2﹣2n,MQ=2﹣2n,∴△MNQ为等腰直角三角形,则∠MNQ=45°,又点P(0,﹣n2),即点M(n,0),设直线MN与y轴的交点为H,则OH=OM,则点H(0,﹣n),作NK⊥y轴于点K,在△NKH中,NK=KH,则NH=(2﹣n),又HP=OH+OP=n2﹣n,∵PN为角平分线,则∠MNP=∠PNQ=22.5°,故NH=HP,则(2﹣n)=n2﹣n,解得:n=2或﹣2(舍去2),∵n2﹣2﹣m=0,解得:m=2.4.如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点D是直线AB上方抛物线上的一动点,①求D到AB的距离最大值及此时的D点坐标;②若∠DAB=∠BAC,求D点的坐标.解:(1)由y=x+2可得:当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣x+2;(2)①如图1,过点D作DN⊥AC于N,交AB于F,作DH⊥AB于H,∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∴AB===2,∵∠FAN+∠AFN=90°,∠FDH+∠DFH=90°,∠AFN=∠DFH,∴∠FAN=∠FDH,∴cos∠FAN=cos∠FDH,∴,∴=,∴DH=DF,∴当DF有最大值时,DH有最大值,设点D,F,∴DF==﹣(m+2)2+2,∴当m=﹣2时,DF有最大值为2,∴DH的最大值为,∴当点D(﹣2,3)时,D到AB的距离最大值为;②如图2,延长CB,AD交于点E,∵抛物线y=﹣x2﹣x+2与x轴交于点A,点C,∴点C(1,0),∴OC=1,∵=,∠AOB=∠BOC,∴△AOB∽△BOC,∴∠BAO=∠CBO,∵∠BAO+∠ABO=90°,∴∠ABO+∠CBO=90°,∴∠ABC=90°,∵∠DAB=∠BAC,AB=AB,∠ABC=∠ABE=90°,∴△ABC≌△ABE(ASA),∴BC=BE,∵B(0,2),点C(1,0),∴点E(﹣1,4),∴直线AE的解析式为y=x+,联立方程组:,解得:,,∴点D(﹣,).5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)D为抛物线上第一象限内一点,求△DCB面积的最大值;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),∴,解得:,∴抛物线的表达式为y=﹣x2+x+4;(2)如图,过点D作DE∥y轴交BC于点E,交x轴于点F,∵B(8,0),C(0,4),∴直线BC解析式为y=﹣x+4,设D(m,﹣m2+m+4),则E(m,﹣m+4),∵D为抛物线上第一象限内一点,∴DE=DF﹣EF=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,∴△DCB面积=8×DE=4(﹣m2+2m)=﹣m2+8m=﹣(m﹣4)2+16,∴当m=4时,△DCB面积最大,最大值为16;(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则﹣x2+x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB﹣HB=8﹣m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8﹣m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴,解得:,∴y=﹣x+4,∴,解得:,,∴P(,﹣).综上所述,点P的坐标为(6,4)或(,﹣).6.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(5,0)、B(﹣3,4),抛物线的对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠PAO=∠BAO,求点P的坐标.解:(1)将A(5,0),B(﹣3,4)代入y=ax2+bx,得:,解得:,∴所求抛物线的表达式为y=x2﹣x.(2)∵抛物线的表达式为y=x2﹣x,∴抛物线的对称轴为直线x=,∴点D的坐标为(,0).过点B作BC⊥x轴,垂足为点C,如图1所示.∵点B的坐标为(﹣3,4),点D的坐标为(,0),∴BC=4,OC=3,CD=3+=,∴cot∠BDO==.(3)设点P的坐标为(m,n),过点P作PQ⊥x轴,垂足为点Q,如图2所示.则PQ=﹣n,OQ=m,AQ=5﹣m.在Rt△ABC中,∠ACB=90°,∴cot∠BAC===2.∵∠PAO=∠BAO,∴cot∠PAO===2,即m﹣2n=5①.∵BC⊥x轴,PQ⊥x轴,∴∠BCO=∠PQA=90°,∴BC∥PQ,∴=,∴=,即4m=﹣3n②.由①、②得:,解得:,∴点P的坐标为(,﹣).7.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.解:(1)∵抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),∴,解得:,∴抛物线解析式为:y=x2+x﹣6;(2)①设点P(a,a2+a﹣6),∵点P位于y轴的左侧,∴a<0,PE=﹣a,∵PD=2PE,∴|a2+a﹣6|=﹣2a,∴a2+a﹣6=﹣2a或a2+a﹣6=2a,解得:a1=,a2=(舍去)或a3=﹣2,a4=3(舍去)∴PE=2或;②存在点P,使得∠ACP=∠OCB,理由如下,∵抛物线y=x2+x﹣6与y轴交于点C,∴点C(0,﹣6),∴OC=6,∵点B(2,0),点A(﹣3,0),∴OB=2,OA=3,∴BC===2,AC===3,如图,过点A作AH⊥CP于H,∵∠AHC=∠BOC=90°,∠ACP=∠BCO,∴△ACH∽△BCO,∴,∴=,∴AH=,HC=,设点H(m,n),∴()2=(m+3)2+n2,()2=m2+(n+6)2,∴或,∴点H(﹣,﹣)或(﹣,),当H(﹣,﹣)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣x﹣6,∴x2+x﹣6=﹣x﹣6,解得:x1=﹣2,x2=0(舍去),∴点P的坐标(﹣2,﹣4);当H(﹣,)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣7x﹣6,∴x2+x﹣6=﹣7x﹣6,解得:x1=﹣8,x2=0(舍去),∴点P的坐标(﹣8,50);综上所述:点P坐标为(﹣2,﹣4)或(﹣8,50).8.如图1,抛物线y=ax2+c与x轴交于点A、B,与y轴交于点C,P为x轴下方抛物线上一点,若OC=2OA=4.(1)求抛物线解析式;(2)如图2,若∠ABP=∠ACO,求点P的坐标;(3)如图3,点P的横坐标为1,过点P作PE⊥PF,分别交抛物线于点E,F.求点A到直线EF距离的最大值.解:(1)∵CO=4,故c=﹣4,则抛物线的表达式为y=ax2﹣4,∵OC=2OA=4,故点A(﹣2,0),则0=4a﹣4,解得a=1,故抛物线的表达式为y=x2﹣4;(2)过点A作x轴的垂线交BP的延长线于点Q,在△BAQ和△COA中,,∴△BAQ≌△COA(AAS),∴AQ=OA=2,∴Q(﹣2,﹣2),由点B、Q的坐标得,直线BQ解析式为y=x﹣1,联立,解得x1=2(舍去),x2=,∴P(,);(3)设E(x1,x12﹣4),F(x2,x22﹣4),P(1,﹣3),由点P、E的坐标得,yPE=(x1+1)x﹣4﹣x1,同理可得yPF=(x2+1)x﹣4﹣x2,又∵PE⊥PF,∴(x1+1)(x2+1)=﹣1,∴x1x2+x1+x2+1=﹣1,x1x2=﹣2﹣(x1+x2)(这里可以构造三垂模型如图3,利用相似三角形的性质得到).同理可得EF的解析式为:yEF=(x1+x2)x﹣4﹣x1x2,∴yEF=(x1+x2)x﹣4+2+(x1+x2)=(x1+x2)(x+1)﹣2,∴直线EF恒过定点(﹣1,﹣2),设该点为R,连接点AR,则AR为点A到直线EF距离的最大值,∴AR=.9.如图,已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)M是抛物线上第一象限上的一点,连接AM,正好将△ABC的面积分成相等的两部分,求M点的坐标.(3)抛物线上是否存在点P,使∠PAB=∠ABC,若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)把A(﹣1,0),B(3,0)代入得:,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)作BC的中点N,连接AN并延长交抛物线于M,如图:∵N为BC中点,∴直线AN将△ABC的面积分成相等的两部分,即M是满足条件的点,在y=﹣x2+2x+3中,令x=0得y=3,∴C(0,3),∵B(3,0),N为BC中点,∴N(,),设直线AN解析式为y=mx+n,将A(﹣1,0),N(,)代入得:,解得,∴直线AN解析式为y=x+,解得或,∴M(,),答:M点的坐标(,);(3)存在点P,使∠PAB=∠ABC,理由如下:过A作AP∥BC交抛物线于P,交y轴于S,作S关于x轴的对称轴点T,作直线AT交抛物线于P',如图:∵AP∥BC,∴∠PAB=∠ABC,P是满足条件的点,∵S关于x轴的对称轴点为T,∴∠P'AB=∠PAB=∠ABC,即P'是满足条件的点,由(2)知C(0,3),设直线BC解析式为y=tx+3,将B(3,0)代入得:3t+3=0,∴t=﹣1,∴直线BC解析式为y=﹣x+3,由AP∥BC设直线AP解析式为y=﹣x+d,将A(﹣1,0)代入得:1+d=0,解得d=﹣1,∴直线AP解析式为y=﹣x﹣1,S(0,﹣1),解得或,∴P(4.﹣5),∵S(0,﹣1),S关于x轴的对称轴点为T,∴T(0,1),设直线AT解析式为y=ex+1,将A(﹣1,0)代入得:﹣e+1=0,解得e=1,∴直线AT解析式为y=x+1,解得或,∴P'(2,3),综上所述,点P的坐标为(4,﹣5)或(2,3).10.如图(1),抛物线y=ax2+(a﹣5)x+3(a为常数,a≠0)与x轴正半轴分别交于A,B(A在B的右边).与y轴的正半轴交于点C.连接BC,tan∠BCO=.(1)直接写出抛物线的解析式;(2)如图(2),设抛物线的顶点为Q,P是第一象限抛物线上的点,连接PQ,AQ,AC,若∠AQP=∠ACB,求点P的坐标;(3)如图(3),D是线段AC上的点,连接BD,满足∠ADB=3∠ACB,求点D的坐标.解:(1)∵抛物线y=ax2+(a﹣5)x+3与y轴的正半轴交于点C,∴C(0,3),∴OC=3,∵tan∠BCO=,∴=,∴OB=1,∴B(1,0),将B(1,0)代入y=ax2+(a﹣5)x+3,得a+a﹣5+3=0,解得:a=1,∴抛物线解析式为:y=x2﹣4x+3;(2)如图(2)设PQ与x轴交于N.∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点Q(2,﹣1),∵A(3,0),B(1,0),C(0,3),∴AB=2,OC=OA=3,∴∠CAO=45°,AC=3,过Q作QH⊥x轴于H,则QH=AH=1,∴∠QAH=45°,AQ=,∴∠CAO=∠QAH=45°,∵∠AQP=∠ACB,∴△CAB∽△QAN,∴=,即=,∴AN=,∴ON=3﹣=,∴N(,0),又Q(2,﹣1),∴直线PQ解析式为:y=3x﹣7,联立方程组,解得:,;∴P(5,8);(3)如图(3)作BM⊥AC于M,当点D在线段CM上时,则∠ADB=3∠ACB,∴∠CBD=2∠ACB,作∠CBD的平分线BE交CD于点E,∴∠CBD=2∠CBE,∴∠ACB=∠CBE,∴BE=CE,∵y=x2﹣4x+3,∴A(3,0),B(1,0),C(0,3),∴直线AC的解析式为y=﹣x+3,∠OAC=∠OCA=45°,设E(a,﹣a+3),则(a﹣1)2+(a﹣3)2=a2+a2,解得:a=,∴E(,),设D(m,﹣m+3),∵∠BCD=∠EBD,∠BDC=∠EDB,∴△BCD∽△EBD,∴BD2=CD•ED,∴(m﹣1)2+(m﹣3)2=(m﹣)•m,解得:m=,∴D(,).11.如图,抛物线y=(x﹣3)(x﹣2a)交x轴于A、B两点(点A在点B的左侧),=.(1)求抛物线的函数表达式;(2)如图①,连接BC,点P在抛物线上,且∠BCO=∠PBA.求点P的坐标;(3)如图②,M是抛物线上一点,N为射线CB上的一点,且M、N两点均在第一象限内,B、N是位于直线AM同侧的不同两点,tan∠AMN=2,点M到x轴的距离为2L,△AMN的面积为5L,且∠ANB=∠MBN,请问MN的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)把y=0代入抛物线y=(x﹣3)(x﹣2a),得x=3或x=2a,∵点A在点B的左侧,∴A(2a,0),B(3,0),∵∴∴a=﹣1∴抛物线的函数表达式为:y=x2﹣x﹣6;(2)如图①,作线段BC的垂直平分线交y轴于点D,此时DC=DB∵DC=DB,∴∠DCB=∠DBC,∴∠ODB=∠DCB+∠DBC=2∠BCO,∵∠BCO=∠PBA∴∠PBA=2∠BCO,∴∠ODB=∠PBA,∴tan∠ODB=tan∠PBA,设P(m,m2﹣m﹣6),DC=DB=n,∵C(0,﹣6),B(3,0),∴OC=6,OB=3,∴OD=6﹣n,在Rt△BOD中,(6﹣n)2+32=m2,解得,∴,∵tan∠ODB=tan∠PBA∴即,解得,∴∴点P的坐标为;(3)MN的为定值,定值为5∵A(﹣2,0),B(3,0),点M到x轴的距离为2L∴,∵S△AMN=5L∴S△ABM=S△AMN∵△ABM和△AMN同底AM,∴点B、N到直线AM的距离相等,∴AM∥BN,∴∠MAN=∠ANB,∠AMB=∠MBN,∠ABC=∠MAB∴∠ANB=∠MBN∴∠MAN=∠AMB∵tan∠ABC===2,tan∠AMN=2∴△MAB≌△AMN(ASA),∴MN=AB=5∴MN的为定值,定值为5.12.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1),解得:a=1,故抛物线的表达式为:y=x2+2x﹣3;(2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),由点C、D的坐标知,直线CD的表达式为:y=x﹣3①;tan∠BCO=,则cos∠BCO=;①当点P(P′)在点C的右侧时,∵∠P'BC=∠BCO,故P′B∥y轴,则点P′(1,﹣2);当点P在点C的左侧时,设直线PB交y轴于点H,过点H作HN⊥BC于点N,∵∠P'BC=∠BCO,∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×=,解得:CH=,则OH=3﹣CH=,故点H(0,﹣),由点B、H的坐标得,直线BH的表达式为:y=x﹣②,联立①②并解得:,故点P的坐标为(﹣5,﹣8);②∵∠PAB=∠BCO,而tan∠BCO=,故设直线AP的表达式为:y=x+s,将点A的坐标代入上式并解得:s=1,故直线AP的表达式为:y=x+1③,联立抛物线与③并解得:,故点N(,);设△AMN的外接圆为圆R,当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,∴∠RMH=∠GAR,∵AR=MR,∠AGR=∠RHM=90°,∴△AGR≌△RHM(AAS),∴AG=m+3=RH,RG=﹣n=MH,∴点M(m+n,n﹣m﹣3),将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3④,由题意得:AR=NR,即(m+3)2+n2=(m﹣)2+(﹣n)2⑤,联立④⑤并解得:,故点M(﹣,﹣).13.如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m=•(﹣2m)﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,∴x=或,∴点P的横坐标为:或.14.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+5与x轴交于点A(1,0),B(5,0),∴,解得.∴抛物线的解析式为y=x2﹣6x+5.(2)∵A(1,0),B(5,0),∴OA=1,AB=4.∵AC=AB且点C在点A的左侧,∴AC=4.∴CB=CA+AB=8.∵线段CP是线段CA、CB的比例中项,∴=.∴CP=4.又∵∠PCB是公共角,∴△CPA∽△CBP.∴∠CPA=∠CBP.过P作PH⊥x轴于H.∵OC=OD=3,∠DOC=90°,∴∠DCO=45°.∴∠PCH=45°∴PH=CH=CP=4,∴H(﹣7,0),BH=12.∴P(﹣7,﹣4).∴tan∠CBP==,tan∠CPA=.(3)∵抛物线的顶点是M(3,﹣4),又∵P(﹣7,﹣4),∴PM∥x轴.当点E在M左侧,则∠BAM=∠AME.过点A作AN⊥PM于点N,则N(1,﹣4).∵∠AEM=∠AMB,∴△AEM∽△BMA.∴=.∴=.∴ME=5,∴E(﹣2,﹣4).当点E在M右侧时,记为点E′,∵∠AE′N=∠AEN,∴点E′与E关于直线AN对称,则E′(4,﹣4).综上所述,E的坐标为(﹣2,﹣4)或(4,﹣4).15.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴的负半轴交于点C,已知抛物线的对称轴为直线x=,B、C两点的坐标分别为B(2,0),C(0,﹣3).点P为直线BC下方的抛物线上的一个动点(不与B、C两点重合).(1)求此抛物线的解析式;(2)如图1,连接PB、PC得到△PBC,问是否存在着这样的点P,使得△PBC的面积最大?如果存在,求出面积的最大值和此时点P的坐标;如果不存在,请说明理由.(3)如图2,连接AP交线段BC于点D,点E为线段AD的中点,过点D作DM⊥AB于点M,DN⊥AC于点N,连接EM、EN,则在点P的运动过程中,∠MEN的大小是否为定值?如果是,求出这个定值;如果不是,请说明理由.解:(1)∵对称轴为直线x=,∴﹣=,∵B(2,0),C(0,﹣3)在抛物线上,∴,解得,∴y=x2﹣x﹣3;(2)存在点P,使得△PBC的面积最大,设P(m,m2﹣m﹣3),连接OP,则S△POC=×OC×m=m,S△POB=×OB×(﹣m2+m+3)=﹣m2+m+3,∴S四边形OCPB=S△OPC+S△POB=﹣m2+3m+3,∵S△OBC=×OC×OB=3,∴S△PBC=S四边形OCPB﹣S△BOC=﹣(m﹣)2+,∴当m=时,△PBC的面积最大,最大值为,此时点P的坐标为(,﹣3);(3)∠MEN为定值.当y=0时,x2﹣x﹣3=0,解得x=﹣或x=2,∴A(﹣,0),在Rt△AOC中,tan∠OAC==,∴∠MAC=60°,∵DM⊥AB,DN⊥AC,E是AD的中点,∴ME=NE=AE=DE,∴点M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论