版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模型介绍模型介绍平面内一定的D和O上动点M的连线中,当连线过圆心O时,线段DM有最大值和最小值。分以下情况讨论:(设OD=d,O的半径为r)点D在O外时,d>r,如图:=1\*GB3①当D、M、O三点共线时,线段DM出现最值,DM的最大值为d+r,DM的最小值为d-r;②当点D在O上时,d=r,如图:当D、O、M三点共线时,线段DM有最值;DM最大值为d+r,DM最小值为d-r=0(即点D与点M重合)③当点D在O内时,d<r,如图当点D、O、M三点共线时,DM有最值;DM最大值为d+r,DM最小值为|d-r|=r-d;点圆最值:平面内一定点到圆上一点的距离的最值问题.R方法:求出该定点到圆心的距离d,则最大值为d+r,最小值为|d-r|例题精讲例题精讲【例1】.如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A. B. C.2 D.2解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=AB=2.在Rt△BCE中,BE=AB=2,BC=6,∠B=90°,∴CE==2,∴GC的最小值=CE﹣GE=2﹣2.故选:A.变式训练【变式1-1】.如图,在平行四边形ABCD中,AB=6,AD=2,∠A=45°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.解:如图,连接MC;过点M作ME⊥CD,交CD的延长线于点E.∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=2,CD=AB=6,∵点M为AD的中点,∠A=45°,∴DM=MA=,∠MDE=∠A=45°,∴ME=DE=DM=1,∴CE=CD+DE=6+1=7,由勾股定理得:CM2=ME2+CE2,∴CM==5;由翻折变换的性质得:MA′=MA=,点A′在以M为圆心,为半径的圆上显然,当折线MA′C与线段MC重合时,线段A′C的长度最短,此时A′C=MC﹣MA′=5﹣=4,故答案为4.【变式1-2】.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F与点C的最小距离为.解:如图取AB的中点G,连接FG.FC.GC.∵∠EAF=90°,tan∠AEF=,∴=,∵AB=6,AG=GB,∴AG=GB=3,∵AD=9,∴==,∴=,∵四边形ABCD是矩形,∴∠BAD=∠B=∠EAF=90°,∴∠FAG=∠EAD,∴△FAG∽△EAD,∴FG:DE=AF:AE=1:3,∵DE=3,∴FG=1,∴点F的运动轨迹是以G为圆心1为半径的圆,∵GC==3,∴FC≥GC﹣FG,∴FC≥3﹣1,∴CF的最小值为3﹣1.故答案为3﹣1.【例2】.如图,△ABC中,AB=AC,BC=24,AD⊥BC于点D,AD=5,P是半径为3的⊙A上一动点,连结PC,若E是PC的中点,连结DE,则DE长的最大值为_______解:如图,连接PB,∵AB=AC,AD⊥BC,∴CD=DB=BC=12,∵点E为AC的中点,∴DE是△PBC的中位线,∴DE=PB,∴当PB取最大值时,DE的长最∵P是半径为3的⊙A上一动点,∴当PB过圆心A时,PB最大,∵BD=12,AD=5,∴AB=,∵⊙A的半径为3,∴PB的最大值为13+3=16,∴DE长的最大值为8,故选:A.
变式训练【变式2-1】.如图,在正方形ABCD中,AB=2,F是BD边上的一个动点,连接AF,过点B作BE⊥AF于E,在点F变化的过程中,线段DE的最小值是.解:如图,∵BE⊥AF于E,∴E在以AB为直径圆心为O的圆上,∴当O、E、D三点共线的时候线段DE最小,∵AB=2,四边形ABCD为正方形,∴AO=1=OE,AD=2,∴OD==,∴段DE最小值为OD﹣OF=﹣1.故答案为:﹣1.【变式2-2】.如图,AB是⊙O的直径,点C在半圆的中点,且BC=4cm,点D是上的一个动点,连接BD,过C点作CH⊥BD于H,连接AH,在点D的运动过程中,AH长度的最小值是.解:连接AC,取BC的中点T,连接AT,TH.∵AB是直径,∴∠ACB=90°,∵点C在半圆的中点,∴=,∴AC=CB=4,∵CT=TB=2,∴AT===2,∵CH⊥BD,∴∠CHB=90°,∴点H在以BC为直径的圆上运动,∵CT=TB,∴HT=BC=2,∵AH≥AT﹣HT=2﹣2,∴AH的最小值为2﹣2,故答案为:2﹣2.
1.如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A. B. C.﹣ D.﹣2解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为()A.1.5 B. C. D.2解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=3,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,设所在圆的圆心为O,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=,BD=,∴PB=BD﹣PD=﹣=.故选:B.3.如图,在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,将线段BC绕点B顺时针旋转90°,得到线段BE,连接DE,则DE最大值是.解:如图,将线段BD绕点B顺时针旋转90°,得到线段BP,连接PE,PD,则DB=PB,∠DBP=90°,∵将线段BC绕点B顺时针旋转90°,得到线段BE,∴BC=BE,∠CBE=90°,∴∠CBD=∠EBP,∴△CBD≌△EBP(SAS),∴PE=DC,∵在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,∴DB=CD=AB=1,∴PE=1,PB=1,∴DP=,∵PD+PE≥DE,∴DE≤+1,∴DE最大值为+1,故答案为:+1.4.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为90°;连接CP,线段CP的最小值为﹣1.解:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠DCF=90°,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO﹣OP=﹣1.故答案为:90°,﹣1.5.如图,在△ABC中,∠BAC=90°,AC=8,BC=10,AD是BC边上的高,E、F分别为边DC,DA上的动点,且DE:DF=4:3,射线AE与BF相交于点M,若连接CM,则线段CM的最小值为.解:如图1,连接EF,并延长EF交边AB于点G,∵在△ABC中,∠BAC=90°,AC=8,BC=10,∴,∴AC:AB=4:3,∴AC:AB=DE:DF=4:3,∴,∵∠BAC=∠FDE=90°,∴△BAC∽△FDE,∴∠GBE=∠DFE,∵AD是BC边上的高,∴AD⊥BC,∴∠DFE+∠DEF=90°,∴∠GBE+∠DEF=90°,∴∠BGE=90°,∴EG是△ABE的高,∵AD是△ABE的BE边上的高,∴BM是△ABE的AE边上的高,∴BM⊥AM,∴∠AMB=90°,∴点M在线段AB为直径的上,如图2,作以线段AB为直径的,取圆心O,连接OC交于点N,则当点O、M、C三点共线时,线段CM的最小值,如图3,∵AB=6,点O是圆心,∴OA=ON=3,∵∠BAC=90°,AC=8,∴,∴线段CM的最小值即,故答案为:.6.如图,直角梯形ABCD中,AB∥DC,∠B=90°,AB=1,BC=2,CD=3,以B为圆心,半径为1的弧交BC于M,E是线段CD上一动点,EG⊥AD,垂足为G,F是弧AM上一动点,则EG+EF的最小值为.解:作AH⊥CD于点H.则四边形ABCH是矩形.DH=CD﹣AB=3﹣1=2,AH=BC=2.则AH=DH,△ADH是等腰直角三角形.则∠ADC=45°.延长BC到M使CM=BC=2,作MN⊥AD于点N,交CD于点K.则当E到K时,EG+EF取得最小值.∵∠ADC=90°,MN⊥AD,∴△DNK是等腰直角三角形,∠NKD=∠CKM=45°,同理△CMK是等腰直角三角形.则CK=CM=2,KM=CM=2,∴DK=CD﹣CK=3﹣2=1,∴NK=DK=.则MN=MK+NK=2+=,则EG+EF的最小值是﹣1=.故答案是:.7.如图,在△ABC中,∠ACB=90°,AB=4,点O是AB的中点,以BC为直角边向外作等腰Rt△BCD,连接OD,当OD取最大值时,则∠ODB的度数是.解:如图,将△ODB绕点B逆时针旋转90°,得到△ECB,连接CO,EO,∵将△ODB绕点B逆时针旋转90°,得到△ECB,∴OB=BE,OD=CE,∠BCE=∠BDO,∠OBE=90°∵CE≤OC+OE∴当点O在CE上时,CE有最大值,即OD取最大值,∵BE=OB,∠ABE=90°∴∠BOE=45°∵点O是AB中点,∠ACB=90°∴CO=BO∴∠ECB=∠CBO,∵∠EOB=∠ECB+∠OBC=45°∴∠ECB=22.5°=∠BDO故答案为:22.5°8.如图,正方形ABCD的边长为2,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是.解:如图,若点E在正方形右侧,连接AC,BD交于点O,连接PO,EO,∵∠AED=45°,∠ACD=45°,∴A,C,E,D四点共圆,∵正方形ABCD的边长为2,∴OE=OD=BD=,∵P为AB的中点,O是BD的中点,∴OP=AD=,∵PE≤OP+OE=+,∴当点O在线段PE上时,PE=OP+OE=+,即线段PE的最大值为+,如图,点E在正方形ABCD上方,作斜边为AD的等腰直角△AOD,∠AOD=90°,则点E在以O为圆心,OA为半径的圆上,∴当点P,点O,点E共线时,PE的值最大,过点O作ON⊥AB,交BA延长线于点N,∵AD=2,AO=DO,∠AOD=90°∴AO=,∠OAD=45°,∵ON⊥AB,AD⊥AB∴∠NAO=∠NOA=45°∴AN=NO=∴PO===∴PE最大值为+>+,故答案为:+9.如图,在矩形ABCD中,AB=4,BC=6.(1)如图①,点E是AB的中点,点F是BC边上一点,将△BEF沿EF折叠,点B的对应点为点P,求CP的最小值;(2)如图②,若点P是矩形ABCD内部一点,且∠BPC=90°,求PD取得最小值时,BP的长;(3)如图③,若点P是矩形ABCD内部一点,且∠PAD+∠PBC=60°,求AP+BP的最大值.解:(1)如图1,∵点E是AB的中点,∴BE=AB=2,由折叠知,PE=BE=2,∴点P是在以E为圆心,2为半径的半圆上运动,当点E,P,C共线时,CP最小,∵四边形ABCD时矩形,∴∠ABC=90°,∴CE===2,∴CP最小=CP′=CE﹣EP′=2﹣2;(2)如图2,∵∠BPC=90°,∴点P在以BC为直径的半圆O上运动,当点D,P,O共线时,PD最小,在Rt△COD中,CD=4,OC=BC=3,∴OD=5,∴P′D=OD﹣OP′=5﹣3=2,作P′Q⊥BC于Q,∵∠OQP′=∠BCD=90°,∠COD为公共角,∴△OQP′∽△OCD,∴,∴,∴OQ=,QP′=,在Rt△BQP′中,QP′=,BQ=OB+OQ=3+=,∴BP′==,∴当PD取得最小值时,BP的长为:;(3)如图3,∵四边形ABCD是矩形,∴∠CAB=∠BAD=90°,∴∠CAB+∠BAD=180°,∵∠PAD+∠PBC=60°,∴(∠CAB+∠BAD)﹣(∠PAD+∠PBC)=120°,∴∠PAB+∠PBA=120°,在△ABP中,∠APB=180°﹣120°=60°,延长BP至E,使PE=PA,∴∠E=∠PAE,∵∠E+∠PAE=∠APB=60°,∴∠E=30°,在AB的右侧作等边三角形ABO,以O为圆心,AB为半径作圆O,则点E优弧AEC上运动,当BE为直径时,即点P在点O处时,AP+BP最大,最大为直径BE′=2AB=8.10.如图,已知四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,当点E在AB边上时,请直接写出DE,DG的数量关系;(2)如图②,将图①中的△AEF绕点A逆时针旋转,其他条件不变.①探究(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;②若AD=4,AE=1,求DG的最大值和最小值.解:(1)DE=DG,理由如下:如图①,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=DG.(2)①结论成立,理由如下:如图②,连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE=DG;②∵AE=1,△AEF绕点A旋转,∴点E在以点A为圆心,1为半径的圆A上运动,如图③,当点A、E、D三点共线,且点E在点A的左侧时,DE最大,此时DE=AD+AE=4+1=5,由①可知,DE=DG,∴DG=DE=,即DG的最大值为;如图④,当点A、E、D三点共线,且点E在点A的右侧时,DE最小,此时DE=AD﹣AE=4﹣1=3,由①可知,DE=DG,∴DG=DE=,即DG的最小值为;综上所述,DG的最大值为,最小值为.11.(1)如图1,A、B是⨀O上的两个点,点P在⨀O上,且△APB是直角三角形,⨀O的半径为1①请在图1中画出点P的位置;②当AB=1时,∠APB=30°;(2)如图2,⨀O的半径为5,A、B为⨀O外固定两点(O、A、B三点不在同一直线上),且OA=9,P为⊙O上的一个动点(点P不在直线AB上),以PA和AB为作平行四边形PABC,求BC的最小值并确定此时点P的位置;(3)如图3,A、B是⊙O上的两个点,过A点作射线AM⊥AB,AM交⨀O于点C,若AB=3,AC=4,点D是平面内的一个动点,且CD=2,E为BD的中点,在D的运动过程中,求线段AE长度的最大值与最小值.解:(1)①如图1,△APB、△AP′B是直角三角形;②在Rt△APB中,AB=AP,∴∠APB=30°,故答案为:30;(2)四边形PABC是平行四边形,∴BC=AP,∴BC的最小值即AP的最小值,∵当P为OA与⊙O的交点时,AP最小,∴AP的最小值为9﹣5=4,即BC的最小值为4;(3)连接BC,∵AM⊥AB,∴∠CAB=90°,∴BC是⊙O的直径,∵点D是平面内的一个动点,且CD=2,∴点D的运动路径为以C为圆心,以2为半径的圆,在直角△ABC中,BC===5,∵O是直角△ABC斜边BC上的中点,∴AO=BC=,∵E是BD的中点,O是BC的中点∴OE=CD=1,∴AE的最小值是AO﹣OE=,最大值是AO+OE=.
12.【问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省福州市福州师范大学附属中学2024届高三3月联合检测试题(数学试题文)试题
- 2024年那曲c1客运资格证考试
- 算法设计与分析 课件 6.2-贪心法-基本原理
- 算法设计与分析 课件 1.2.3-算法分析准则 - 时间复杂度 - 渐近分析及符号表示
- 2024年贵阳客运从业资格证考试题目及答案详解
- 2024年百色考客运从业资格证考试题目
- 2024年天津客运从业资格证模拟考试题库电子版
- 2024年哈尔滨客运资格证考试模拟题答案
- 厂房租赁协议
- 吉首大学《空间解析几何》2021-2022学年第一学期期末试卷
- 2024届湖北省武汉市高考英语四调英语试卷 读后续写“拖延症患者的觉醒”讲义素材
- 小学数学与思政融合课教学设计
- 19S406建筑排水管道安装-塑料管道
- 江西省南昌市民德学校2023-2024学年八年级上学期期中数学试题
- 炎症性肠病自我管理
- 新产品上市策划及营销课件
- 2023年度学校食堂每月食品安全调度会议纪要
- 电视主持人劳动合同书
- 磁新材料科技有限公司20万吨超纯铁精粉项目环评可研资料环境影响
- 大学生食品工作方面的生涯发展报告
- 项目部单机油耗分析报告
评论
0/150
提交评论