版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模型介绍模型介绍成立条件:等腰三角形顶角互补模块一:认识“脚拉脚”模型1、等腰直角三角形的逆序脚拉脚基本图ABCABCEDABCEDF已知:△ABC、△ADE为等腰直角三角形,∠B=∠D=90°,AB=CB,AD=ED,点F为CE的中点。结论:BF=DF,BF⊥DF.法1:倍长中线+手拉手延长DF至点G,使得FG=FD,易证△DEF≌△GCF(SAS);所以CG=ED=AD,∠2=∠7;又∠1+∠2+∠3=360°,∠3+∠4+∠5+∠6+∠7=540°(五边形内角和),∠4=∠6=90°;所以∠3+∠5+∠7=∠1+∠2+∠3,所以∠1=∠5;则△BCG≌△BAD(SAS),所以∠DBG=90°,BG=BD;所以BF=DG=DF,BF⊥DF。 由△BCF≌△GEF(SAS),得BC∥GH, 由△DEF≌△GCF(SAS),得GH∥DE,所以∠2=∠6=90°,则∠2=∠1,所以∠H+∠ADE=180°,即∠H=∠ADE=90°,在四边形ADEH中,∠1+∠2=180°, 所以∠H=∠ABC=90°,则∠3+∠4=180°,又∠4+∠5=180°,所以∠1=∠2(8型转角),所以∠3=∠5 所以∠3=∠4注意:选择“四边形对角互补”还是“8型转角”证明角相等取决原有等腰直角三角形底边与公共顶点的夹角(夹角小于45°:选择“四边形对角互补”;夹角大于45°:选择“8型转角”)法2:斜边中线+中位线取AC中点G,AE中点H,连接BG,FG,FH,DH。由中位线定理可知:FG=AE=DH,FH=AC=BG,∠1=∠3=∠2,所以∠1+∠5=∠2+∠4,所以∠BGF=∠FHD;则△BGF≌△FHD(SAS),所以BF=DF,∠FBG=∠DFH,∠BFG=∠FDH;所以∠BFG+∠GFH+∠DFH=∠BFG+∠3+∠FBG=∠BFG+∠1+∠FBG,又∠BFG+∠1+∠FBG+∠5=180°(三角形内角和),所以∠BFG+∠1+∠FBG=90°,所以BF⊥DF。2、等腰三角形的顺序脚拉脚模型ABCABCDEABCDEF已知:△ABC、△ADE为等腰直角三角形,∠B=∠D=90°,AB=CB,AD=ED,结论:CE=BD,∠BFC=45°.法一:相似△ABD∽△ACE(SAS)∠4=∠1∠2=∠3=45°(8字型转角)法二:手拉手+平行四边形将线段BD逆时针旋转90°得到线段BG,连接DG、CG。易证:△BAD≌△BCG(SAS),∠1=∠4+∠5,又∠3+∠5+∠6=∠7=90°,所以∠1+∠2+∠3+∠6=∠2+∠4+∠3+∠5+∠6=90°+90°=180°所以CG平行且等于DE,所以四边形DECG为平行四边形,所以CE=DG=BD,∠BFC=∠BDG=45°3、顶角互补型脚拉脚已知:△ABC、△DCE为等腰三角形,=180°,AB=AC,DC=DE,点F为BE的中点.结论:①AF⊥DF;②.法1:倍长中线+手拉手法2:中位线+相似 延长DF至点G,使得FG=FD,连接AD, 取BC中点M,EC中点N,连接AM,FM,AG,BG,延长BG与CD相交于点H。 DN,FN。易证:△BFG≌△EFD(SAS)由中位线定理得:FN=MC,MF=CN,∠4=∠5;得:BG∥DE,BG=DE=DC, 所以,同理;∠EDH=∠GHD=,所以∠CHB=又∠AMF+∠CMF=∠FND+∠CNF;所以∠ABG=∠ACD(8字型转角) 所以∠AMF=∠FND,得∠AMF∽∠FND ;所以△ABG≌△ACD(SAS),得证。 所以∠3=∠7,;∠1+∠2+∠3+∠4+∠6=∠5+∠6+∠7+∠AFD;所以∠1+∠2=∠AFD=90°例题精讲例题精讲【例1】.如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是线段AC上一点,连接BD.以BD直角边作等腰直角△BDE,∠DBE=90°,连接AE,点F为AE中点,若AB=4,BF=1,则AD的长为.变式训练【变式1-1】.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点,求证:ME=CF.【变式1-2】.已知正方形ABCD,将线段BA绕点B顺时针旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)在图中依题意补全图形,并求∠AEC的度数;(2)作∠EBC的平分线BF交EC于点G,交EA于点F,连接CF,用等式表示线段AE,FB,FC之间的数量关系,并证明.【变式1-3】.(1)如图1,AB=AD,AE=AC,∠BAD=∠EAC,求证:BE=CD.(2)如图2,△ACE是等边三角形,P为三角形外一点,∠APC=120°,求证:PA+PC=PE.(3)如图3,若∠ACE=∠AEC=∠ADC=45°,∠ACD﹣∠AED=60°,DC=3,求DE长.实战演练实战演练1.如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.2.如图,△ABC与△BDE均为等腰直角三角形,BA⊥AC,DE⊥BD,点D在AB边上,连接EC,取EC中点F,求证:(1)AF=DF;(2)AF⊥DF.3.已知:如图,AB=AC,DC=DE,且∠BAC=∠CDE=90°,连接BE,F为BE的中点.求证:(1)∠ACD=∠ABE+∠BED;(2)FA=FD,FA⊥FD.4.已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并直接写出结论;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.5.如图,等边△ABC外有一点D,连接DA,DB,DC.(1)如图1,若∠DAB+∠DCB=180°,求证:BD平分∠ADC;(2)如图2,若∠BDC=60°,求证:BD﹣CD=AD;(3)如图3,延长AD交BC的延长线于点F,以BF为边向下作等边△BEF,若点D,C,E在同一直线上,且∠ABD=α,直接写出∠CEF的度数为(结果用含α的式子表示).6.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想.7.如图1,点A在x轴上,点D在y轴上,以OA、AD为边分别作等边△OAC和等边△ADE,若D(0,4),A(2,0).(1)若∠DAC=10°,求CE的长和∠AEC的度数.(2)如图2,若点P为x轴正半轴上一动点,点P在点A的右边,连PC,以PC为边在第一象限作等边△PCM,延长MA交y轴于N,当点P运动时,①∠ANO的值是否发生变化?若不变,求其值,若变化,请说明理由.②AM﹣AP的值是否发生变化?若不变,求其值,若变化,请说明理由.8.已知点A在x轴正半轴上,以OA为边作等边△OAB,A(x,0),其中x是方程的解.(1)点A的坐标为;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边△ACD,连DB并延长交y轴于点E,求∠BEO的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边△FBG,连GA并延长交y轴于点H,当点F运动时,GH﹣AF的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.9.在平面直角坐标系中,B点在x轴上,且PA⊥PB,点A(0,a)、P(m,m),若a、m满足a2+m2﹣4a﹣8m+20=0(1)如图1,求a、m的值;(2)如图2,若A点运动到y轴的负半轴上,求OB﹣OA的值;(3)如图3,若Q是线段AB上一动点,C为AQ中点,PR⊥PQ且PR=PQ,连BR,请同学们判断线段BR与PC之间的关系,并加以证明.10.如图1,在平面直角坐标系中,A(0,4),C(﹣2,﹣2),且∠ACB=90°,AC=BC.(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰Rt△BDG,且BD=DG,∠BDG=90°,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论.11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知:在平面直角坐标系中,点A(﹣3,0),点B(﹣2,3).(1)在图①中的y轴上求作点P,使得PA+PB的值最小;(2)若△ABC是以AB为腰的等腰直角三角形,请直接写出点C的坐标;(3)如图②,在△ABC中,∠ABC=90°,AB=BC,点D(不与点A重合)是x轴上一个动点,点E是AD中点,连接BE,把BE绕着点E顺时针旋转90°得到FE(即∠BEF=90°,BE=FE),连接BF、CF、CD,试猜想∠FCD的度数,并给出证明.13.如图,平面直角坐标系中.A点在y轴上,B(b,0),C(c,0)在x轴上,∠BAC=60°,且b、c满足等式b2+2bc+c2=0.(1)判断△ABC的形状,并说明理由;(2)如图1,F为AB延长线上一点,连FC,G为y轴上一点,若∠GFC+∠ACG=60°.求证:FG平分∠AFC;(3)如图2,△BDE中,DB=DE,∠BDE=120°,M为AE中点,试确定DM与CM的位置关系,并说明理由.14.如图所示,△ABC,△ADE为等腰三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点,则线段EF与FC的数量关系是;∠EFD的度数为°.(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点,则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论.(3)若△ADE绕A点任意旋转一个角度到如图3的位置,F为线段BD的中点,连接EF、FC,请你完成图3,请猜想线段EF与FC的关系,并验证你的猜想.15.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.16.CD是△ABC的高(1)如图1,若∠ACB=90°,∠BAC的平分线AE交CD于点F,交BC于点E,求证:CE=CF;(2)如图2,若∠A=2∠B,∠ACB的平分线CG交AB于点G,求的值;(3)如图3,若△ABC是以AB为斜边的等腰直角三角形,再以AD为斜边作等腰Rt△AMD,Q是DB的中点,连接CQ、MQ,试判断线段CQ与MQ的关系,并给出证明.17.(1)探究:如图1,在△ABC和△ADE都是等边三角形,点D在边BC上.①求∠DCE的度数;②直接写出线段CD,CE,AC之间的数量关系;(2)应用:如图2,在四边形ABCD中,AB=BC,∠ABC=60°,P是四边形ABCD内一点,且∠APC=120°,求证:PA+PC+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游景区设施改造公证告知书
- 水泥生产线招投标合同风险分析
- 大学教学楼改造施工协议
- 《粤港澳大湾区珠宝零售业营商规范》(征求意见稿)编制说明
- 科技研发地块租赁合同
- 建筑施工队宿舍租赁合同
- 城市安全防护钢结构施工合同
- 会计审计教师聘用模板
- 政府加班指导
- 印刷技术注册师工程师招聘合同
- 浅析牵引变压器非电量保护误动原因及解决方案
- [精品]台湾地区零售药店的现状与发展趋势
- 小学二年级等量代换
- 焙烧炉烟气换热器的设计方案
- 燃气公司安全管理奖罚办法
- 客位大金湖旅游船初步设计
- KCl-NaCl-H2O三元体系相图
- 血浆置换及临床的应用业内特制
- 雨蝶(李翊君)原版正谱钢琴谱五线谱乐谱.docx
- 人教版地理必修一教材解读(2019年版)
- 综合实践活动五年级下册课件-制作木蜻蜓14张ppt课件
评论
0/150
提交评论