版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州实验中学高三下学期新高考数学试题(月考)独立作业1注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.2.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.63.已知集合,则的值域为()A. B. C. D.4.若sin(α+3π2A.-12 B.-135.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆6.函数的图象的大致形状是()A. B. C. D.7.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.8.等比数列的前项和为,若,,,,则()A. B. C. D.9.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.4510.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A. B. C. D.11.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.12.已知数列满足,(),则数列的通项公式()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)14.已知平面向量,,且,则向量与的夹角的大小为________.15.在的展开式中,的系数为________.16.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,是与的等差中项.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.18.(12分)已知等差数列an,和等比数列b(I)求数列{an}(II)求数列n2an⋅a19.(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.20.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.21.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.22.(10分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.2、C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.3、A【解析】
先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得,,令,,,所以得,在上递增,在上递减,,所以,即的值域为故选A【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题4、B【解析】
由三角函数的诱导公式和倍角公式化简即可.【详解】因为sinα+3π2=3故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.5、B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.6、B【解析】
根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.7、B【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,
,
当且仅当三点共线时,取“=”号,∴的最小值为.
故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.8、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.9、B【解析】
计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.10、B【解析】
由题可知,,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,,即,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题11、A【解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.12、A【解析】
利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】
①∵,∴平面
,得出上任意一点到平面的距离相等,所以判断命题①;②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;④过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.【详解】①∵,∴平面
,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;
②在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,,所以,设面的法向量为,则,即,令,则,设面的法向量为,,即,,由图示可知,二面角是锐二面角,所以二面角的余弦值为,所以③不正确;④过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值.因为正方体的棱长为2,所以设点的坐标为,,,所以,所以,又所以,所以,,,故④正确.
故答案为:①②④.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.14、【解析】
由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.15、【解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.
故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.16、1080【解析】
按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,(2)【解析】
(1)根据等差中项的定义得,然后构造新等比数列,写出的通项即可求(2)根据(1)的结果,分组求和即可【详解】解:(1)由已知可得,即,可化为,故数列是以为首项,2为公比的等比数列.即有,所以.(2)由(1)知,数列的通项为:,故.【点睛】考查等差中项的定义和分组求和的方法;中档题.18、(I)an=2n-1,bn=【解析】
(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II)n2【详解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【点睛】本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.19、(1);(2)见解析【解析】
(1)等价于(Ⅰ)或(Ⅱ)或(Ⅲ),分别解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【详解】(1)等价于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集为;(2),,,,,当且仅当,即时取等号,,当且仅当即时取等号,.【点睛】本题考查分类讨论解绝对值不等式,考查三角不等式的应用及基本不等式的应用,是一道中档题.20、(1)见解析(2)【解析】
(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2)过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面..中,,为的中点,.又、平面,,平面.平面,平面平面.(2)解:过作交于,如图为的中点,,.又平面,平面.,.所以,又、、两两互相垂直,以、、为坐标轴建立如图所示的空间直角坐标系.,,,设平面的法向量,则,即.令,则,..平面的一个法向量为.二面角的余弦值为.【点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.21、(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《个人所得税专项附加扣除政策研究》
- 2024-2030年版中国珠光颜料行业规模分析及发展可行性研究报告
- 2024年房屋装修工程:简约装潢合同样本
- 2024年度医疗机构木门安装工程合同
- 2024年招标代理进度监控合同
- 2024年拆除工程爆破安全合同
- 2024-2030年新版中国溴矿石项目可行性研究报告
- 2024-2030年工艺品行业市场发展分析及前景趋势与投资战略研究报告
- 2024-2030年冶炼专用阀搬迁改造项目可行性研究报告
- 2024-2030年全球及中国高碳铬铁行业需求现状及前景趋势预测报告~
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 档案整理及数字化服务方案(技术标 )
- 角的度量 华应龙(课堂PPT)
- 公路铣刨机整机的设计含全套CAD图纸
- 机器人学课程教学大纲
- 浙江世贸君澜酒店集团介绍
- GHTF—质量管理体系--过程验证指南中文版
- 铝及铝合金焊接作业指导书
- 水利工程质量与安全监督工作实务PPT课件
- 放射性口腔粘膜炎的发病机制及危险因素
- 加油站特殊作业安全管理制度(完整版)
评论
0/150
提交评论