版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市超盈实验中学高三下学期一模考试新高考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.2.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.3.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④4.已知复数,,则()A. B. C. D.5.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.6.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.7.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.9.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得10.复数的虚部为()A. B. C.2 D.11.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.12.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)14.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.15.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于_____.16.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.18.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.(12分)已知函数.(1)求的极值;(2)若,且,证明:.20.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.21.(12分)如图,四棱锥中,平面,,,.(I)证明:;(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.22.(10分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.2、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.3、D【解析】
利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.4、B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.5、B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.6、A【解析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.7、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、B【解析】
设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.9、A【解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.10、D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.11、B【解析】
根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.12、C【解析】
由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】
①∵,∴平面
,得出上任意一点到平面的距离相等,所以判断命题①;②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;④过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.【详解】①∵,∴平面
,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;
②在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,,所以,设面的法向量为,则,即,令,则,设面的法向量为,,即,,由图示可知,二面角是锐二面角,所以二面角的余弦值为,所以③不正确;④过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值.因为正方体的棱长为2,所以设点的坐标为,,,所以,所以,又所以,所以,,,故④正确.
故答案为:①②④.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.14、1【解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.15、2【解析】
由题意知:,,,.由∠NRF=60°,可得为等边三角形,MF⊥PQ,可得F为HR的中点,即求.【详解】不妨设点P在第一象限,如图所示,连接MF,QF.∵抛物线C:y2=4x的焦点为F,准线为l,P为C上一点∴,.∵M,N分别为PQ,PF的中点,∴,∵PQ垂直l于点Q,∴PQ//OR,∵,∠NRF=60°,∴为等边三角形,∴MF⊥PQ,易知四边形和四边形都是平行四边形,∴F为HR的中点,∴,故答案为:2.【点睛】本题主要考查抛物线的定义,属于基础题.16、【解析】
不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a,求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为中点,E为AB的三等分点(靠近点A),设棱长为a,,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)64,65;(2);(3).【解析】
(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得,5,10,15,1,利用“超几何分布”的计算公式即可得出概率,进而得出分布列与数学期望.【详解】由题意知,样本容量为,.(1)平均数为,设中位数为,因为,所以,则,解得.(2)由题意可知,分数在内的学生有24人,分数在内的学生有12人.设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,则,所以.(3)在评定等级为“合格”和“不合格”的学生中用分层抽样的方法抽取10人,则“不合格”的学生人数为,“合格”的学生人数为.由题意可得的所有可能取值为0,5,10,15,1.,.所以的分布列为0510151.【点睛】本题主要考查了频率分布直方图的性质、分层抽样、超几何分布列及其数学期望,考查了计算能力,属于中档题.18、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解析】
(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【点睛】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.19、(1)极大值为;极小值为;(2)见解析【解析】
(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【详解】(1)函数的定义域为,,所以当时,;当时,,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高空建筑涂料施工安全合同
- 风力发电桩基夯扩桩施工合同
- 砂石采购合同范本样本
- 深圳电力施工合同:公共安全篇
- 文化娱乐供电合同管理
- 沙河顶租房合同范例
- 铁路线路建设合同三篇
- 高尚住宅开发权转让合同三篇
- 团体保险合同受益人管辖条款
- 集体经济合同整改报告范文
- 吊篮操作和维护保养管理制度
- 《失血性休克查房》课件
- 2023-2024学年广东省广州市番禺区高二(上)期末地理试卷
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 专题04二元一次方程组的应用解答120题(12种解题模型)专项训练(解析版)
- 2024-2030年中国智慧港口行业深度调研及投资前景预测报告
- 2024年贵州省公务员考试《行测》真题及答案解析
- 贺州房地产市场月报2024年08月
- 健康减肥课件英语
- 考点 23 溶解度及溶解度曲线(解析版)
- 湘教版九年级上册数学期末考试试卷附答案
评论
0/150
提交评论