




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区吐鲁番市高昌区二中2025届高一下数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳2.已知,,则()A. B. C. D.3.已知函数f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若该函数在区间()上有最大值而无最小值,且满足f()+f()=0,则实数φ的取值范围是()A.(,) B.(,) C.(,) D.(,)4.若,则函数的最小值是()A. B. C. D.5.函数图像的一条对称轴方程为()A. B. C. D.6.过点的直线的斜率为,则等于()A. B.10 C.2 D.47.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.8.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.09.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.10.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数.利用课本中推导等差数列的前项和的公式的方法,可求得的值为_____.12.在中,若,则等于__________.13.化简:______.(要求将结果写成最简形式)14.已知向量,,则在方向上的投影为______.15.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).16.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.18.已知函数.(1)若关于的不等式的解集是,求,的值;(2)设关于的不等式的解集是,集合,若,求实数的取值范围.19.在平面上有一点列、、、、,对每个正整数,点位于函数的图像上,且点、点与点构成一个以为顶角顶点的等腰三角形;(1)求点的纵坐标的表达式;(2)若对每个自然数,以、、为边长能构成一个三角形,求的取值范围;(3)设,若取(2)中确定的范围内的最小整数,问数列的最大项的项数是多少?试说明理由;20.已知函数f1当a>0时,求函数y=f2若存在m>0使关于x的方程fx=m+121.已知数列满足,数列满足,其中为的前项和,且(1)求数列和的通项公式(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据折线图中11个月的数据分布,数据从小到大排列中间的数可得中位数,根据数据的增长趋势可判断BCD.【详解】由折线图知,月跑步平均里程的中位数为5月份对应的里程数;月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,B,C错.本题选择D选项.【点睛】本题主要考查了识别折线图进行数据分析,属于基础题.2、C【解析】
利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.3、D【解析】
根据题意可画图分析确定的周期,再列出在区间端点满足的关系式求解即可.【详解】由题该函数在区间()上有最大值而无最小值可画出简图,又,故周期满足.故.故.又,故.故选:D【点睛】本题主要考查了正弦型函数图像的综合运用,需要根据题意列出端点处的函数对应的表达式求解.属于中等题型.4、B【解析】
直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.5、B【解析】
对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。6、B【解析】
直接应用斜率公式,解方程即可求出的值.【详解】因为过点的直线的斜率为,所以有,故本题选B.【点睛】本题考查了直线斜率公式,考查了数学运算能力.7、B【解析】
先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.8、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.9、C【解析】
利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.10、C【解析】
利用直线与平面平行、垂直的判断即可。【详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【点睛】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
由题意可知:可以计算出的值,最后求出的值.【详解】设,,所以有,因为,因此【点睛】本题考查了数学阅读能力、知识迁移能力,考查了倒序相加法.12、;【解析】
由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.13、【解析】
结合诱导公式化简,再结合两角差正弦公式分析即可【详解】故答案为:【点睛】本题考查三角函数的化简,诱导公式的使用,属于基础题14、【解析】
由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.15、①③【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.16、【解析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(1)1【解析】
(1)运用函数的奇偶性的定义即可得证(1)由题意可得有且只有两个相等的实根,可得判别式为0,解方程可得所求值.【详解】(1)证明:由函数,,可得定义域为,且,可得为奇函数;(1)方程只有一个实数解,即为,即△,解得舍去),则的值为1.【点睛】本题考查函数的奇偶性的判断和二次方程有解的条件,考查方程思想和定义法,属于基础题.18、(1),.(2).【解析】分析:(1)先根据不等式解集与对应方程根的关系得x2-(a+1)x+1=0的两个实数根为m、2,再利用韦达定理得结果.(2)当A∩B=时,即不等式f(x)>0对x∈B恒成立,再利用变量分离法得a+1<x+的最小值,最后根据基本不等式求最值,即得结果.详解:(1)∵关于x的不等式f(x)<0的解集是{x|m<x<2},∴对应方程x2-(a+1)x+1=0的两个实数根为m、2,由根与系数的关系,得,解得a=,m=;(2)∵关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},当A∩B=时,即不等式f(x)>0对x∈B恒成立;即x∈时,x2-(a+1)x+1>0恒成立,∴a+1<x+对于x∈(0,1]恒成立(当时,1>0恒成立);∵当x∈(0,1]时,∴a+1<2,即a<1,∴实数a的取值范围是.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.19、(1);(2);(3)最大,详见解析;【解析】
(1)易得的横坐标为代入函数即可得纵坐标.(2)易得数列为递减的数列,若要组成三角形则,再代入表达式求解不等式即可.(3)由可知求即可.【详解】(1)由点、点与点构成一个以为顶角顶点的等腰三角形有.故.(2)因为,故为减函数,故,又以、、为边长能构成一个三角形,故即.解得或,又,故.(3)由取(2)中确定的范围内的最小整数,且,故.故,由题当时数列取最大项.故且,计算得当时取最大值.【点睛】本题主要考查了数列与函数的综合题型,需要根据题意找到函数横纵坐标的关系,同时也要列出对应的不等式再化简求解.属于中等题型.20、(1)见解析;(2)a<-3-2【解析】
(1)将问题转化为解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,将问题转化为:关于x的方程ax2【详解】(1)由题意,fx=ax解方程ax-1x-1=0,得x1①当1a>1时,即当0<a<1时,解不等式ax-1x-1≥0,得此时,函数y=fx的定义域为②当1a=1时,即当a=1时,解不等式x-12此时,函数y=fx的定义域为③当1a<1时,即当a>1时,解不等式ax-1x-1≥0,解得此时,函数y=fx的定义域为(2)令t=m+1则关于x的方程fx=t有四个不同的实根可化为即ax2-解得a<-3-2【点睛】本题考查含参不等式的求解,考查函数的零点个数问题,在求解含参不等式时,找出分类讨论的基本依据,在求解二次函数的零点问题时,应结合图形找出等价条件,通过列不等式组来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广州市白云区康园工疗站服务中心招聘考试真题
- 二零二五年度货车运输车辆保险理赔协议
- 2025年度充电车位租赁及充电桩安装与维修服务合同范本
- 橡胶制品解除居间合同
- 临聘水管员合同范本
- 工厂拆除可行性研究报告
- 2025年度员工股权激励与公司知识产权保护的合作协议
- 4S店装修设计施工协议
- 2025年中国辐照电缆未来发展预测及投资方向研究报告
- 个人摩托转卖合同范本
- 地下室车库综合管线施工布置
- 月度及年度绩效考核管理办法
- 采购订单模板
- 毕业设计钢筋弯曲机的结构设计
- 工程结构质量特色介绍
- 清华大学MBA课程——运筹学
- 湿法冶金浸出净化和沉积PPT课件
- 生产现场作业十不干PPT课件
- 雨污水管网劳务施工分包合同
- 通信杆路工程施工
- 初中物理光学经典题(共23页)
评论
0/150
提交评论