四川省苍溪中学2025届高一下数学期末统考试题含解析_第1页
四川省苍溪中学2025届高一下数学期末统考试题含解析_第2页
四川省苍溪中学2025届高一下数学期末统考试题含解析_第3页
四川省苍溪中学2025届高一下数学期末统考试题含解析_第4页
四川省苍溪中学2025届高一下数学期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省苍溪中学2025届高一下数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题2.圆心为且过原点的圆的一般方程是A. B.C. D.3.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.44.已知,向量,则向量()A. B. C. D.5.在中,若,则()A. B. C. D.6.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,17.已知等差数列的前项的和为,若,则等于()A.81 B.90 C.99 D.1808.已知数列为等比数列,且,则()A. B. C. D.9.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.10.盒中装有除颜色以外,形状大小完全相同的3个红球、2个白球、1个黑球,从中任取2个球,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球 B.至少有一个白球;红、黑球各一个C.恰有一个白球:一个白球一个黑球 D.至少有一个白球;都是白球二、填空题:本大题共6小题,每小题5分,共30分。11.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.12.已知数列的通项公式为,若数列为单调递增数列,则实数的取值范围是______.13.为等比数列,若,则_______.14.某几何体的三视图如图所示,则该几何体的体积为__________.15.函数在的值域是__________________.16.某市三所学校有高三文科学生分别为500人,400人,300人,在三月进行全市联考后,准备用分层抽样的方法从三所高三文科学生中抽取容量为24的样本,进行成绩分析,则应从校高三文科学生中抽取_____________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.18.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.19.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.20.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积21.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:日期1月11号1月12号1月13号1月14号1月15号平均气温()91012118销量(杯)2325302621(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出关于的线性回归方程式;(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.(参考公式:,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.2、D【解析】

根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。3、C【解析】

由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【点睛】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.4、A【解析】

由向量减法法则计算.【详解】.故选A.【点睛】本题考查向量的减法法则,属于基础题.5、A【解析】

由已知利用余弦定理即可解得的值.【详解】解:,,,由余弦定理可得:,解得:,故选:A.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.6、B【解析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【详解】由,得,所以圆心为,半径为.【点睛】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.7、B【解析】

根据已知得到的值,利用等差数列前项和公式以及等差数列下标和的性质,求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和的计算,属于基础题.8、A【解析】

根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.9、A【解析】

根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.10、B【解析】

根据对立事件和互斥事件的定义,对每个选项进行逐一分析即可.【详解】从6个小球中任取2个小球,共有15个基本事件,因为存在事件:取出的两个球为1个白球和1个红球,故至少有一个白球;至少有一个红球,这两个事件不互斥,故A错误;因为存在事件:取出的两个球为1个白球和1个黑球,故恰有一个白球:一个白球一个黑球,这两个事件不互斥,故C错误;因为存在事件:取出的两个球都是白球,故至少有一个白球;都是白球,这两个事件不互斥,故D错误;因为至少有一个白球,包括:1个白球和1个红球,1个白球和1个黑球,2个白球这3个基本事件;红、黑球各一个只包括1个红球1个白球这1个基本事件,故两个事件互斥,因还有其它基本事件未包括,故不对立.故B正确.故选:B.【点睛】本题考查互斥事件和对立事件的辨析,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.12、【解析】

根据题意得到,推出,恒成立,求出的最大值,即可得出结果.【详解】因为数列的通项公式为,且数列为单调递增数列,所以,即,所以,恒成立,因此即可,又随的增大而减小,所以,因此实数的取值范围是.故答案为:【点睛】本题主要考查由数列的单调性求参数,熟记递增数列的特点即可,属于常考题型.13、【解析】

将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。14、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.15、【解析】

利用反三角函数的性质及,可得答案.【详解】解:,且,,∴,故答案为:【点睛】本题主要考查反三角函数的性质,相对简单.16、8【解析】

利用分层抽样中比例关系列方程可求.【详解】由已知三所学校总人数为500+400+300=1200,设从校高三文科学生中抽取x人,由分层抽样的要求及抽取样本容量为24,所以,,故答案为8.【点睛】本题考查分层抽样,考查计算求解能力,属于基本题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)计算表达出,再根据,两边平方求化简即可求得.(2)根据,再利用余弦的差角公式展开后分别计算求解即可.【详解】(1)由题意,得,,,,.(2),,均为锐角,仍为锐角,,,.【点睛】本题主要考查了根据向量的数量积列出关于三角函数的等式,再利用三角函数中的和差角以及凑角求解的方法.属于中档题.18、(1);(2).【解析】

(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.19、(1);(2).【解析】

(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.20、(1)证明见解析;(2).【解析】

解法一:(1)取中点,连接,,证出,利用线面平行的判定定理即可证出.(2)取中点,连接,利用面面垂直的性质定理可得平面,过作于,可得平面,由即可求解.解法二:(1)取中点,连接,证出平面,平面,利用面面平行的判定定理可证出平面平面,再利用面面平行的性质定理即可证出.(2)取中点,连接,根据面面垂直的性质定理可得平面,再由,利用三棱锥的体积公式即可求解.【详解】解法一:(1)取中点,连接,.因为分别是的中点,所以,且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)取中点,连接,则,且,因为平面平面,平面平面,平面,所以平面同理,在平面内,过作于,则平面,且,因为为的中点,所以,所以,.解法二:(1)取中点,连接,因为为的中点,所以,因为平面,平面,所以平面.因为,且,所以四边形为平行四边形,故,因为平面,平面,所以平面,因为,平面,所以平面平面,因为平面,所以平面.(2)取中点,连接,依题意,为等边三角形,所以,且.因为平面平面,平面平面,平面,所以平面.因为是的中点,所以,所以.【点睛】本小题主要考查几何体的体积及、直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.21、(1);(2);(3)19杯.【解析】试题分析:(1)由“选取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论