版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省临夏回族自治州临夏中学2025届高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.2.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切3.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面4.一个圆锥的表面积为,它的侧面展开图是圆心角为的扇形,该圆锥的母线长为()A. B.4 C. D.5.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.6.已知点,,则与向量方向相同的单位向量为()A. B. C. D.7.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.8.已知等比数列的公比为,若,,则()A.-7 B.-5 C.7 D.59.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,10.已知为等差数列,为其前项和.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.12.设为等差数列,若,则_____.13.如图,在边长为的菱形中,,为中点,则______.14.已知直线l过定点,且与两坐标轴围成的三角形的面积为4,则直线l的方程为______.15.若正实数满足,则的最小值为______.16.已知无穷等比数列的首项为,公比为,则其各项的和为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上一点,且,求的值.18.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.19.设等比数列{}的首项为,公比为q(q为正整数),且满足是与的等差中项;数列{}满足.(1)求数列{}的通项公式;(2)试确定的值,使得数列{}为等差数列:(3)当{}为等差数列时,对每个正整数是,在与之间插入个2,得到一个新数列{},设是数列{}的前项和,试求满足的所有正整数.20.已知都是第二象限的角,求的值。21.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.2、B【解析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【点睛】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.3、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.4、B【解析】
设圆锥的底面半径为,母线长为,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【详解】设圆锥的底面半径为,母线长为它的侧面展开图是圆心角为的扇形又圆锥的表面积为,解得:母线长为:本题正确选项:【点睛】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.5、D【解析】
由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D6、A【解析】
由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【点睛】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.7、B【解析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.8、A【解析】
由等比数列通项公式可构造方程求得,再利用通项公式求得结果.【详解】故选:【点睛】本题考查等比数列通项公式基本量的计算问题,考查基础公式的应用,属于基础题.9、A【解析】
分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.10、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】
利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。12、【解析】
根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。13、【解析】
选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.14、或.【解析】
设直线的方程为,利用已知列出方程,①和②,解方程即可求出直线方程【详解】设直线的方程为.因为点在直线上,所以①.因为直线与两坐标轴围成的三角形的面积为4,所以②.由①②可知或解得或故直线的方程为或,即或.【点睛】本题考查截距式方程和直线与坐标轴形成的三角形面积问题,属于基础题15、【解析】
由得,将转化为,整理,利用基本不等式即可求解。【详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【点睛】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。16、【解析】
根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】
根据三角函数定义列方程解得,再根据三角函数定义求的值.【详解】,(1)当时,.(2)当时,,解得.当时,;当时,.综上当时,;当时,;当时,.【点睛】本题考查三角函数定义,考查基本分析求解能力,属基础题.18、(1);(2)①;②或.【解析】
(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上,则有:,解得:,即圆心的坐标为,又,即半径,故所求圆的方程为;(2)①由,得为圆的直径,则过点,的方程为,联立,解得,直线的斜率,则直线的方程为,即;②当直线的斜率不存在时,直线方程为,此时,,,;当直线的斜率存在时,设直线方程为.再设直线被圆所截弦长为,则圆心到直线的距离,则.当且仅当,即时等号成立.此时弦长为10,圆心到直线的距离为5,由,解得.直线方程为.当面积最大时,所求直线的方程为:或.【点睛】本题考查圆的方程的求法、直线与圆的位置关系应用,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力.19、(1);(2);(3).【解析】
(1)由已知可求出的值,从而可求数列的通项公式;(2)由已知可求,从而可依次写出,,若数列为等差数列,则有,从而可确定的值;(3)因为,,,检验知,3,4不合题意,适合题意.当时,若后添入的数则一定不适合题意,从而必定是数列中的某一项,设则误解,即有都不合题意.故满足题意的正整数只有.【详解】解(1)因为,所以,解得或(舍),则又,所以(2)由,得,所以,,,则由,得而当时,,由(常数)知此时数列为等差数列(3)因为,易知不合题意,适合题意当时,若后添入的数,则一定不适合题意,从而必是数列中的某一项,则.整理得,等式左边为偶数,等式右边为奇数,所以无解。综上:符合题意的正整数.【点睛】本题主要考察了等差数列与等比数列的综合应用,考察了函数单调性的证明,属于中档题.20、;【解析】
根据所处象限可确定的符号,利用同角三角函数关系可求得的值;代入两角和差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 二零二五年瑜伽馆品牌合作与赞助合同3篇
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 现代教学工具学校多媒体教学设备的采购与应用
- 消费者心理在农产品包装设计中的实践案例
- 2025年人教版(2024)拓展型课程化学下册阶段测试试卷含答案
- 幼儿园场地租赁合同
- 店铺租赁合同
- 2025年中图版第一册生物上册月考试卷含答案
- 2025-2030年(全新版)中国锂离子电容器行业规模分析及发展建议研究报告
- 医养康养园项目商业计划书
- 《穿越迷宫》课件
- 《C语言从入门到精通》培训教程课件
- 2023年中国半导体行业薪酬及股权激励白皮书
- 2024年Minitab全面培训教程
- 社区电动车棚新(扩)建及修建充电车棚施工方案(纯方案-)
- 项目推进与成果交付情况总结与评估
- 铁路项目征地拆迁工作体会课件
- 医院死亡报告年终分析报告
- 建设用地报批服务投标方案(技术方案)
- 工会工作人年度考核个人总结
评论
0/150
提交评论