2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题含解析_第1页
2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题含解析_第2页
2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题含解析_第3页
2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题含解析_第4页
2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省渭南市潼关县高一数学第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则2.已知数列是等差数列,数列满足,的前项和用表示,若满足,则当取得最大值时,的值为()A.16 B.15 C.14 D.133.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.4.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.5.已知数列中,,则=()A. B. C. D.6.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值7.若,则t=()A.32 B.23 C.14 D.138.如图,在正方体中,,分别是,中点,则异面直线与所成的角是()A. B. C. D.9.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.10.已知,则的值为()A. B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角满足,则_____12.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.13.已知椭圆的右焦点为,过点作圆的切线,若两条切线互相垂直,则_____________.14.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)15.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.16.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令,求数列的前n项和.18.在某市高三教学质量检测中,全市共有名学生参加了本次考试,其中示范性高中参加考试学生人数为人,非示范性高中参加考试学生人数为人.现从所有参加考试的学生中随机抽取人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;19.设数列是公差为2的等差数列,数列满足,,.(1)求数列、的通项公式;(2)求数列的前项和;(3)设数列,试问是否存在正整数,,使,,成等差数列?若存在,求出,的值;若不存在,请说明理由.20.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.21.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.2、A【解析】

设等差数列的公差为,根据得到,推出,判断出当时,;时,;再根据,判断出对取正负的影响,进而可得出结果.【详解】设等差数列的公差为,因为数列是等差数列,,所以,因此,所以,所以,,因此,当时,;时,,因为,所以当时,,当时,,当时,,当时,因为,所以;因为所以,当时,取得最大值.故选:A【点睛】本题主要考查等差数列的应用,熟记等差数列的性质,及其函数特征即可,属于常考题型.3、C【解析】

作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.4、D【解析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.5、B【解析】

,故选B.6、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.7、B【解析】

先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.8、D【解析】

如图,平移直线到,则直线与直线所成角,由于点都是中点,所以,则,而,所以,即,应选答案D.9、B【解析】

化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【详解】利用正弦定理和余弦定理得到:故选B【点睛】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.10、B【解析】

化为齐次分式,分子分母同除以,化弦为切,即可求解.【详解】.故选:B.【点睛】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用诱导公式以及两角和与差的三角公式,化简求解即可.【详解】解:角满足,可得

则.

故答案为:.【点睛】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.12、【解析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.13、【解析】

首先分析直线与圆的位置关系,然后结合已知可判断四边形的形状,得出的比值,最后得到答案.【详解】设切点为,根据已知两切线垂直,四边形是正方形,,根据,可得.故填:.【点睛】本题考查了直线与圆的几何性质,以及椭圆的性质,考查了转化与化归的能力,属于基础题型.14、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.15、.【解析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.16、【解析】2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有(数学1,数学2,语文),(数学1,语文,数学2),(数学2,数学1,语文),(数学2,语文,数学1),(语文,数学1,数学2),(语文,数学2,数学1)共6个,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故2本数学书相邻的概率.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案不唯一,详见解析.【解析】

(1)运用等差中项性质和等比数列的通项公式,解方程可得公比;(2)讨论公比,结合等差数列和等比数列的求和公式,以及错位相减法求和,即可得到所求和.【详解】(1)因为是一个公比为的等比数列,所以.因为成等差数列,所以即.解得.(2)①若q=2,又它的前4和,得,解得所以.因为,∴,2,∴,∴②若q=1,又它的前4和,即4因为,所以.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18、(1)见解析;(2)92.4【解析】

(1)根据总体的差异性选择分层抽样,再结合抽样比计算出非示范性高中和示范性高中所抽取的人数;(2)将每个矩形底边的中点值乘以相应矩形的面积所得结果,再全部相加可得出本次测验全市学生数学成绩的平均分.【详解】(1)由于总体有明显差异的两部分构成,故采用分层抽样,由题意,从示范性高中抽取人,从非师范性高中抽取人;(2)由频率分布直方图估算样本平均分为推测估计本次检测全市学生数学平均分为【点睛】本题考查分层抽样以及计算频率分布直方图中的平均数,着重考查学生对几种抽样方法的理解,以及频率分布直方图中几个样本数字的计算方法,属于基础题.19、(1);.(2)(3)存在,或者,【解析】

(1)令,得,故,代入等式得到,计算得到.(2)利用错位相减法得到前N项和.(3),假设存在正整数,,使成等差数列,则,解得或者.【详解】(1)令,得,所以将代入,得所以数列是以1为首项,2为公比的等比数列,即.(2)两式相减得到化简得到.(3),假设存在正整数,,使成等差数列则,即,因为,为正整数,所以存在或者,使得成等差数列.【点睛】本题考查了等差数列,等比数列的通项公式,错位相减法,综合性大,技巧性强,意在考查学生的综合应用能力.20、(1),,年龄在的人数为(2)【解析】

(1)根据第一组的频数和频率可得,由所有频率和为1可得,再求得间的频率后可得人数;(2)把第一组人数编号,如男性为,女性为,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率.【详解】(1),设第2组的频率为f,,所以,第3组和第4组的频率为,年龄在的人数为;(2)记第1组中的男性为,女性为,随机抽取3名群众的基本事件是:,,共20种;其中至少有两名女性的基本事件是:共16种.所以至少有两名女性的概率为.【点睛】本题考查频率分布直方图,考查古典概型.解题关键是掌握性质:频率分布直方图中所有频率(小矩形面积)之和为1.21、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论