浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题含解析_第1页
浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题含解析_第2页
浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题含解析_第3页
浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题含解析_第4页
浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市高级中学2025届高一下数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,函数的图像是()A. B.C. D.2.在中,,,为的外接圆的圆心,则()A. B.C. D.3.已知向量,,则向量在向量方向上的投影为()A. B. C. D.4.数列的通项公式,其前项和为,则等于()A. B. C. D.5.已知,,,若不等式恒成立,则t的最大值为()A.4 B.6 C.8 D.96.若是一个圆的方程,则实数的取值范围是()A. B.C. D.7.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.8.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.9.若向量,,则点B的坐标为()A. B. C. D.10.若则一定有()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则=_________________12.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.13.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.14.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.15.把正整数排列成如图甲所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则________________.16.已知,是夹角为的两个单位向量,向量,,若,则实数的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.18.已知正项数列的前项和为,对任意,点都在函数的图象上.(1)求数列的通项公式;(2)若数列,求数列的前项和;(3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.19.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.20.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?21.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据的取值进行分类讨论,去掉中绝对值符号,转化为分段函数,利用正弦函数的图象即可得解.【详解】当时,;当时,.因此,函数的图象是B选项中的图象.故选:B.【点睛】本题考查正切函数与正弦函数的图象,去掉绝对值是关键,考查分类讨论思想的应用,属于中等题.2、A【解析】

利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.3、B【解析】

先计算向量夹角,再利用投影定义计算即可.【详解】由向量,,则,,向量在向量方向上的投影为.故选:B【点睛】本题考查了向量数量积的坐标表示以及向量数量积的几何意义,属于基础题.4、B【解析】

依据为周期函数,得到,并项求和,即可求出的值。【详解】因为为周期函数,周期为4,所以,,故选B。【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。5、C【解析】

因为不等式恒成立,所以只求得的最小值即可,结合,用“1”的代换求其最小值.【详解】因为,,,若不等式恒成立,令y=,当且仅当且即时,取等号所以所以故t的最大值为1.故选:C【点睛】本题主要考查不等式恒成立和基本不等式求最值,还考查了运算求解的能力,属于中档题.6、C【解析】

根据即可求出结果.【详解】据题意,得,所以.【点睛】本题考查圆的一般方程,属于基础题型.7、D【解析】

,故选D.8、C【解析】

由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.9、B【解析】

根据向量的坐标运算得到,得到答案.【详解】,故.故选:.【点睛】本题考查了向量的坐标运算,意在考查学生的计算能力.10、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.12、【解析】

由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【点睛】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.13、【解析】

根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.14、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.15、【解析】

由图乙可得:第行有个数,且第行最后的一个数为,从第三行开始每一行的数从左到右都是公差为的等差数列,注意到,,据此确定n的值即可.【详解】分析图乙,可得①第行有个数,则前行共有个数,②第行最后的一个数为,③从第三行开始每一行的数从左到右都是公差为的等差数列,又由,,则,则出现在第行,第行第一个数为,这行中第个数为,前行共有个数,则为第个数.故填.【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.16、【解析】

由题意得,且,,由=,解得即可.【详解】已知,是夹角为的两个单位向量,所以,得,若解得故答案为【点睛】本题考查了向量数量积的运算性质,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.18、(1);(2);(3).【解析】

(1)将点代入函数的解析式得到,令,由可求出的值,令,由得,两式相减得出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求出数列的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前项和;(3)利用分组求和法与裂项法求出数列的前项和,由题意得出,判断出数列各项的符号,得出数列的最大值为,利用函数的单调性得出该函数在区间上的最大值为,然后解不等式可得出实数的取值范围.【详解】(1)将点代入函数的解析式得到.当时,,即,解得;当时,由得,上述两式相减得,得,即.所以,数列是以为首项,以为公比的等比数列,因此,;(2),,因此,①,②由①②得,所以;(3).令为的前项和,则.因为,,,,当时,,令,,令,则,当时,,此时,数列为单调递减数列,,则,即,那么当时,数列为单调递减数列,此时,则.因此,数列的最大值为.又,函数单调递增,此时,函数的最大值为.因为对任意的,存在,.所以,解得,因此,实数的取值范围是.【点睛】本题考查利用等比数列前项和求数列通项,同时也考查了错位相减法求和以及数列不等式恒成立问题,解题时要充分利用数列的单调性求出数列的最大项或最小项的值,考查化归与转化思想的应用,属于难题.19、(1)见证明;(2)【解析】

(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【点睛】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积法求高向量法.20、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解析】

(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题意可以求出该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)利用基本不等式可以求出年平均利润最大值.【详解】解:(1)由题意知,年总收入为万元年维护总费用为万元.∴总利润,即,(2)年平均利润为∵,∴当且仅当,即时取“”∴答:这套设备使用6年,可使年平均利润最大,最大利润为35万元.【点睛】本题考查了应用数学知识解决生活实际问题的能力,考查了基本不等式的应用,考查了数学建模能力,考查了数学运算能力.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论