版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.公差不为零的等差数列的前项和为.若是的等比中项,,则等于()A.18 B.24 C.60 D.902.菱形ABCD,E是AB边靠近A的一个三等分点,DE=4,则菱形ABCD面积最大值为()A.36 B.18 C.12 D.93.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.544.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.5.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.6.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.7.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.8.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.9.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.10.已知两个单位向量的夹角为,则下列结论不正确的是()A.方向上的投影为 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在正项等比数列中,,,则公比________.12.已知数列的通项公式为是数列的前n项和,则______.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.14.设点是角终边上一点,若,则=____.15.已知扇形的面积为,圆心角为,则该扇形半径为__________.16.若过点作圆的切线,则直线的方程为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点,,,其外接圆为圆.(1)求圆的方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程;(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点是线段的中点,求圆的半径的取值范围.18.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.19.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(I)求的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.20.在中,内角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.21.已知等比数列满足,,等差数列满足,,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由等比中项的定义可得,根据等差数列的通项公式及前n项和公式,列方程解出和,进而求出.【详解】因为是与的等比中项,所以,即,整理得,又因为,所以,故,故选C.【点睛】该题考查的是有关等差数列求和问题,涉及到的知识点有等差数列的通项,等比中项的定义,等差数列的求和公式,正确应用相关公式是解题的关键.2、B【解析】
设出菱形的边长,在三角形ADE中,用余弦定理表示出cosA【详解】设菱形的边长为3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故选:B【点睛】本小题主要考查余弦定理解三角形,考查同角三角函数的基本关系式,考查菱形的面积公式,考查二次函数最值的求法,属于中档题.3、C【解析】
利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.4、A【解析】因为,若,则,,故选A.5、A【解析】
用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.6、C【解析】
根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.7、C【解析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.8、C【解析】
由复合函数单调性及函数的定义域得不等关系.【详解】由题意,解得.故选:C.【点睛】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.9、D【解析】
利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.10、B【解析】试题分析:A.方向上的投影为,即,所以A正确;B.,所以B错误;C.,所以,所以C正确;D.,所以.D正确.考点:向量的数量积;向量的投影;向量的夹角.点评:熟练掌握数量积的有关性质是解决此题的关键,尤其要注意“向量的平方就等于其模的平方”这条性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等比中项可求出,再由可求出公比.【详解】因为,,所以,,解得.【点睛】本题考查了等比数列的性质,考查了计算能力,属于基础题.12、【解析】
对数列的通项公式进行整理,再求其前项和,利用对数运算规则,可得到,从而求出,得到答案.【详解】所以所以.故答案为:.【点睛】本题考查对数运算公式,由数列的通项求前项和,数列的极限,属于中档题.13、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=14、【解析】
根据任意角三角函数的定义,列方程求出m的值.【详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【点睛】本题考查了任意角三角函数的定义与应用问题,属于基础题.15、2【解析】
将圆心角化为弧度制,再利用扇形面积得到答案.【详解】圆心角为扇形的面积为故答案为2【点睛】本题考查了扇形的面积公式,属于简单题.16、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)【解析】
试题分析:(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.试题解析:(1)的面积为2;(2)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径,圆的方程为,设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.当直线垂直于轴时,显然符合题意,即为所求;当直线不垂直于轴时,设直线方程为,则,解得,综上,直线的方程为或.(3)直线的方程为,设,,因为点是线段的中点,所以,又,都在半径为的圆上,所以因为关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,又,所以对成立.而在上的值域为,所以且.又线段与圆无公共点,所以对成立,即.故圆的半径的取值范围为.考点:直线与圆的位置关系等有关知识的综合运用.18、(1);(2);(3)的最大值为1999,此时公差为.【解析】
(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为.【点睛】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.19、(Ⅰ)(Ⅱ)平均数74.9,众数75.14,中位数75;(Ш)【解析】
(I)根据频率之和为列方程,结合求出的值.(II)利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III)先计算出从,中分别抽取人和人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【详解】解:(I)依题意得,所以,又,所以.(Ⅱ)平均数为中位数为众数为(Ш)依题意,知分数在的市民抽取了2人,记为,分数在的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:,共28种,其中满足条件的为,共13种,设“至少有1人的分数在”的事件为,则【点睛】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图估计平均数、中位数和众数的方法,考查利用古典概型求概率.属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)根据正弦定理将边角转化,结合三角函数性质即可求得角.(Ⅱ)先根据余弦定理求得,再由正弦定理求得,利用同角三角函数关系式求得,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙保温细节施工方案
- 变电站一次设备
- 广东省惠州市博罗县2024-2025学年八年级上学期期末教学质量阶段性诊断英语试题(原卷版)
- 二零二五年房地产企业劳动合同及售后服务协议2篇
- 课标版高考语文二轮复习题一论述类文本阅读课件
- 2024年浙江宇翔职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年泉州工艺美术职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年阜新市矿务局精神病医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年江门职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 二零二五年物流仓储项目保证担保协议3篇
- 教师培训的教师专业知识与技能
- 人工智能在体育训练与竞技分析中的应用
- 2024版幼儿园哲学思考与人生观主题班会课件
- 2023年拓展加盟经理年终总结及下一年计划
- 比赛对阵表模板
- 混凝土技术规格书
- 医美药品基本管理制度范本
- 吴茱萸热奄包
- 思想道德与法治2023版教学设计第六章 学习法治思想 提升法治素养
- 霍尼韦尔1900 Honeywell条码扫描枪设置
- 公司年度工作总结会议议程
评论
0/150
提交评论