江苏常熟中学2025届高一下数学期末质量跟踪监视试题含解析_第1页
江苏常熟中学2025届高一下数学期末质量跟踪监视试题含解析_第2页
江苏常熟中学2025届高一下数学期末质量跟踪监视试题含解析_第3页
江苏常熟中学2025届高一下数学期末质量跟踪监视试题含解析_第4页
江苏常熟中学2025届高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏常熟中学2025届高一下数学期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,中,,,用表示,正确的是()A. B.C. D.2.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为()A. B. C. D.3.sin300°的值为A. B. C. D.4.以圆形摩天轮的轴心为原点,水平方向为轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为米,把摩天轮上的一个吊篮看作一个点,起始时点在的终边上,绕按逆时针方向作匀速旋转运动,其角速度为(弧度/分),经过分钟后,到达,记点的横坐标为,则关于时间的函数图象为()A. B.C. D.5.设函数,则满足的的取值范围是()A. B. C. D.6.在中,,.若点满足,则()A. B. C. D.7.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定8.在中,a、b分别为内角A、B的对边,如果,,,则()A. B. C. D.9.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或010.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值是__________.12._____________.13.已知函数是定义域为的偶函数,当时,,若关于的方程有且仅有6个不同实数根,则实数的取值范围为______.14.若,则实数的值为_______.15.已知中,,则面积的最大值为_____16.程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.18.已知内角的对边分别是,若,,.(1)求;(2)求的面积.19.已知、、是锐角中、、的对边,是的面积,若,,.(1)求;(2)求边长的长度.20.如图,在边长为2菱形ABCD中,,且对角线AC与BD交点为O.沿BD将折起,使点A到达点的位置.(1)若,求证:平面ABCD;(2)若,求三棱锥体积.21.已知.(1)求与的夹角;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由平面向量基本定理和三角形法则求解即可【详解】由,可得,则,即.故选C.【点睛】本题考查平面向量基本定理和三角形法则,熟记定理和性质是解题关键,是基础题2、A【解析】

由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.3、B【解析】

利用诱导公式化简,再求出值为.【详解】因为,故选B.【点睛】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.4、B【解析】

根据题意,点的横坐标,由此通过特殊点的坐标,判断所给的图象是否满足条件,从而得出结论.【详解】根据题意可得,振幅,角速度,初相,点的横坐标,故当时,,当时,为的最大值,故选:B.【点睛】本题考查三角函数图象的实际应用以及余弦型函数图象的特征,其中,求出函数模型的解析式是解题的关键,考查推理能力,属于中等题.5、C【解析】

利用特殊值,对选项进行排除,由此得到正确选项.【详解】当时,,由此排除D选项.当时,,由此排除B选项.当时,,由此排除A选项.综上所述,本小题选C.【点睛】本小题主要考查分段函数求值,考查利用特殊值法解选择题,属于基础题.6、A【解析】

试题分析:,故选A.7、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】

先求出再利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:A.【点睛】本题注意考查正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.9、A【解析】

根据框图有,由判断条件即即可求出的值.【详解】由有.根据输出的条件是,即.所以,解得:.故选:A【点睛】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.10、B【解析】

画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.12、【解析】,故填.13、0<a≤或a.【解析】

运用偶函数的性质,作出函数f(x)的图象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),结合图象,分析有且仅有6个不同实数根的a的情况,即可得到a的范围.【详解】函数是定义域为的偶函数,作出函数f(x)的图象如图:关于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),当0≤x≤2时,f(x)∈[0,],x>2时,f(x)∈(,).由,则f(x)有4个实根,由题意,只要f(x)=a有2个实根,则由图象可得当0<a≤时,f(x)=a有2个实根,当a时,f(x)=a有2个实根.综上可得:0<a≤或a.故答案为0<a≤或a..【点睛】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.14、【解析】

由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.15、【解析】

设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.16、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3.6万;(2)2.06.【解析】

(1)由频率分布直方图的性质,求得,利用频率分布直方图求得月均用水量不低于3吨的频率为,进而得到样本中月均用水量不低于3吨的户数;(2)根据频率分布直方图,利用中位数的定义,即可求解.【详解】(1)由频率分布直方图的性质,可得,即,解得,又由频率分布直方图可得月均用水量不低于3吨的频率为,即样本中月均用水量不低于3吨的户数为万.(2)根据频率分布直方图,得:,则,所以中位数应在组内,即,所以中位数是.【点睛】本题主要考查了频率分布直方图的性质,以及频率分布直方图中位数的求解及应用,其中解答中熟记频率分布直方图的性质和中位数的计算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.19、(1);(2).【解析】

(1)利用三角形的面积公式结合为锐角可求出的值;(2)利用余弦定理可求出边长的长度.【详解】(1)由三角形的面积公式可得,得.为锐角,因此,;(2)由余弦定理得,因此,.【点睛】本题考查利用三角形的面积公式求角,同时也考查了利用余弦定理求三角形的边长,考查计算能力,属于基础题.20、(1)见解析(2)【解析】

(1)证明与即可.(2)法一:证明平面,再过点做垂足为,证明为三棱锥的高再求解即可.法二:通过进行转化求解即可.法三:通过进行转化求解即可.【详解】证明:(1)∵在菱形ABCD中,,,AC与BD交于点O.以BD为折痕,将折起,使点A到达点的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中点,则且,因为且,,所以平面,过点做垂足为,则平面BCD,又∴,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论