云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题含解析_第1页
云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题含解析_第2页
云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题含解析_第3页
云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题含解析_第4页
云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄州姚安县一中2025届高一数学第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角为()A.30° B.60° C.120° D.150°2.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.14.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.5.已知向量,且,则()A. B. C. D.6.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定7.函数的图象的一条对称轴方程是()A. B. C. D.8.已知空间中两点,则长为()A. B. C. D.9.设全集,集合,则()A. B. C. D.10.已知函数的最大值为,最小值为,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前三项为,则此数列的通项公式为______12.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.13.在中,分别是角的对边,,且的周长为5,面积,则=______14.已知直线与相互垂直,且垂足为,则的值为______.15.已知,则___________.16.已知,则的最小值是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程18.已知的内角所对的边分别为,且,.(1)若,求角的值;(2)若,求的值.19.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.20.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.21.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由直线方程得到直线斜率,进而得到其倾斜角.【详解】因直线方程为,所以直线的斜率,故其倾斜角为150°.故选D【点睛】本题主要考查求直线的倾斜角,熟记定义即可,属于基础题型.2、A【解析】

由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.3、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m4、C【解析】

由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.5、A【解析】

直接利用向量平行的充要条件列方程求解即可.【详解】由可得到.故选A【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.6、C【解析】

延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.7、A【解析】

由,得,,故选A.8、C【解析】

根据空间中的距离公式,准确计算,即可求解,得到答案.【详解】由空间中的距离公式,可得,故选C.【点睛】本题主要考查了空间中的距离公式,其中解答中熟记空间中的距离公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】

先求出,由此能求出.【详解】∵全集,集合,∴,∴.故选B.【点睛】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.10、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可得,解得.

∴等差数列的前三项为-1,1,1.

则1.

故答案为.12、6【解析】

由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.13、【解析】

令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.14、【解析】

先由两直线垂直,可求出的值,将垂足点代入直线的方程可求出的点,再将垂足点代入直线的方程可求出的值,由此可计算出的值.【详解】,,解得,直线的方程为,即,由于点在直线上,,解得,将点的坐标代入直线的方程得,解得,因此,.故答案为:.【点睛】本题考查了由两直线垂直求参数,以及由两直线的公共点求参数,考查推理能力与计算能力,属于基础题.15、;【解析】

把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.16、3【解析】

根据,将所求等式化为,由基本不等式,当a=b时取到最小,可得最小值。【详解】因为,所以,所以(当且仅当时,等号成立).【点睛】本题考查基本不等式,解题关键是构造不等式,并且要注意取最小值时等号能否成立。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-118、(1)或;(2)、.【解析】

(1)由先求的值,再求角即可;(2)先由求出,再根据求出即可.【详解】(1)由已知,又,所以,即,或;(2)因为,由可得,又因为,所以,即,总之、.【点睛】本题主要考查正弦定理、余弦定理及三角形面积公式的应用,属常规考题.19、(1)(2)见解析【解析】

(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.20、(1),(2)【解析】

(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论