江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题含解析_第1页
江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题含解析_第2页
江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题含解析_第3页
江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题含解析_第4页
江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州市兴化市第一中学2025届高一数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1482.若,A点的坐标为,则B点的坐标为()A. B. C. D.3.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.10244.如果全集,,则()A. B. C. D.5.设为数列的前项和,,则的值为()A. B. C. D.不确定6.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶7.若,则A. B. C. D.8.在等差数列中,若,则()A.45 B.75 C.180 D.3209.若点,直线过点且与线段相交,则的斜率的取值范围是()A.或B.或C.D.10.在△ABC中,如果,那么cosC等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,,,,则______.12.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.13.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.14.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.15.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;16.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线的方程为.(1)若在两坐标轴上的截距相等,求的值;(2)若不经过第二象限,求实数的取值范围.18.(Ⅰ)已知向量,求与的夹角的余弦值;(Ⅱ)已知角终边上一点,求的值.19.已知,且(1)求的值;(2)求的值.20.如图,三棱柱,底面,且为正三角形,,,为中点.(1)求证:直线平面;(2)求二面角的大小.21.已知.若三点共线,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【详解】解:∵在数列中,,

,即数列为公差为−4的等差数列,

令可得,

∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,

∴数列的前8或9项和最大,

由求和公式可得

故选:C.【点睛】本题考查等差数列的求和公式和等差数列的判定,属基础题.2、A【解析】

根据向量坐标的求解公式可求.【详解】设,因为A点的坐标为,所以.所以,即.故选:A.【点睛】本题主要考查平面向量坐标的运算,侧重考查数学运算的核心素养.3、C【解析】

因为,所以,则因为数列的各项均为正数,所以所以,故选C4、C【解析】

首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.5、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.6、D【解析】

根据互斥事件的定义逐个分析即可.【详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.7、B【解析】

分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.8、C【解析】试题分析:因为数列为等差数列,且,所以,,从而,所以,而,所以,故选C.考点:等差数列的性质.9、C【解析】试题分析:画出三点坐标可知,两个边界值为和,数形结合可知为.考点:1.相交直线;2.数形结合的方法;10、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.12、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.13、【解析】

求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,

得,得.

当且仅当时,有最大值1.

过球心,且四面体的体积为1,

∴三棱锥的体积为.

则到平面的距离为.

此时的外接圆的半径为,则球的半径的最小值为,

∴球O的表面积的最小值为.

故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.14、【解析】

设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.15、(1)(3)【解析】

根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错;故答案为(1)(3)【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.16、【解析】

根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0或2;(2).【解析】

(1)当过坐标原点时,可求得满足题意;当不过坐标原点时,可根据直线截距式,利用截距相等构造方程求得结果;(2)当时,可得直线不经过第二象限;当时,结合函数图象可知斜率为正,且在轴截距小于等于零,从而构造不等式组求得结果.【详解】(1)当过坐标原点时,,解得:,满足题意当不过坐标原点时,即时若,即时,,不符合题意若,即时,方程可整理为:,解得:综上所述:或(2)当,即时,,不经过第二象限,满足题意当,即时,方程可整理为:,解得:综上所述:的取值范围为:【点睛】本题考查直线方程的应用,涉及到直线截距式方程、由图象确定参数范围等知识;易错点是在截距相等时,忽略经过坐标原点的情况,造成丢根.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知分别求得及与,再由数量积求夹角计算结果;(Ⅱ)利用任意角的三角函数的定义求得sinα,再由三角函数的诱导公式化简求值.【详解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)为角α终边上一点,∴,.则sin2α.【点睛】本题考查利用数量积求向量的夹角,考查任意角的三角函数的定义,训练了利用诱导公式化简求值,是基础题.19、(1);(2).【解析】

(1)由条件先求得然后再用二倍角公式求;(2)利用角的变换求出,在根据的范围确定的值.【详解】(1)因为,所以,所以,所以;(2)因为,所以因为,所以,由(1)得,所以=,因为,所以.【点睛】根据已知条件求角的步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角.在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是,选余弦较好;若角的范围为,选正弦较好.20、(1)证明见解析;(2).【解析】

(1)连交于,连,则点为中点,为中点,得,即可证明结论;(1)为正三角形,为中点,可得,再由底面,得底面,得,可证平面,有,为的平面角,解,即可求出结论.【详解】(1)连交于,连,三棱柱,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论