版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市彭州中学2025届高一下数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,与函数完全相同的是()A. B.C. D.2.设,则下列不等式中正确的是()A. B.C. D.3.在中,为的三等分点,则()A. B. C. D.4.如图,若长方体的六个面中存在三个面的面积分别是2,3,6,则该长方体中线段的长是()A. B. C.28 D.5.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数()A. B. C. D.6.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.7.在中,内角,,的对边分别为,,,且=.则A. B. C. D.8.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.9.已知数列的前项和为,且,则()A. B. C. D.10.已知直线是函数的一条对称轴,则的一个单调递减区间是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______12.已知向量,,则的最大值为_______.13.数列满足,设为数列的前项和,则__________.14.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.15.不等式的解集是.16.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.18.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.19.已知:的顶点,,.(1)求AB边上的中线CD所在直线的方程;(2)求的面积.20.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.21.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.2、B【解析】
取,则,,只有B符合.故选B.考点:基本不等式.3、B【解析】试题分析:因为,所以,以点为坐标原点,分别为轴建立直角坐标系,设,又为的三等分点所以,,所以,故选B.考点:平面向量的数量积.【一题多解】若,则,即有,为边的三等分点,则,故选B.4、A【解析】
由长方体的三个面对面积先求出同一点出发的三条棱长,即可求出结果.【详解】设长方体从一个顶点出发的三条棱的长分别为,且,,,则,,,所以长方体中线段的长等于.【点睛】本题主要考查简单几何体的结构特征,属于基础题型.5、A【解析】
根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.6、D【解析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.8、B【解析】
根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.9、D【解析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.10、B【解析】
利用周期公式计算出周期,根据对称轴对应的是最值,然后分析单调减区间.【详解】因为,若取到最大值,则,即,此时处最接近的单调减区间是:即,故B符合;若取到最小值,则,即,此时处最接近的单调减区间是:即,此时无符合答案;故选:B.【点睛】对于正弦型函数,对称轴对应的是函数的最值,这一点值得注意.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.12、.【解析】
计算出,利用辅助角公式进行化简,并求出的最大值,可得出的最大值.【详解】,,,所以,,当且仅当,即当,等号成立,因此,的最大值为,故答案为.【点睛】本题考查平面向量模的最值的计算,涉及平面向量数量积的坐标运算以及三角恒等变换思想的应用,考查分析问题和解决问题的能力,属于中等题.13、【解析】
先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【详解】,.,因此,,故答案为:.【点睛】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.14、【解析】
先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【点睛】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.15、【解析】
因为,且抛物线开口方向向上,所以,不等式的解集是.16、【解析】试题分析:设等比数列的公比为,由得,,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】
(1)计算,得到,再计算的通项公式得到答案.(2),利用裂项求和得到得到证明.【详解】(1),,.,.是等差数列,所以,所以.当时,,又,所以,当时,,符合,所以的通项公式是.(2).所以,即.【点睛】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式方法的灵活运用.18、(1)详见解析;(2);(3)详见解析.【解析】
(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.19、(1);(2)11.【解析】
(1)直接利用已知条件求出AB边上的中点,即可求直线的方程.(2)利用所求出的直线方程利用分割法求出三角形的面积,或者求出及直线AB的方程,可得点C到直线AB的距离,求出三角形的面积.【详解】(1)∵线段AB的中点D的坐标为,所以,由两点式方程可得,AB边上的中线CD所在直线的方程为,即.(2)法1:因为,点A到直线CD的距离是,所以的面积是.法2:因为,由两点式得直线AB的方程为:,点C到直线AB的距离是,所以的面积是.【点睛】本题考查直线方程求法与点到直线距离公式应用,属于基础题.20、(1);(2).【解析】
(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本题考查正弦定理和余弦定理,考查同角间的三角函数关系,考查基本不等式求最值.本题主要是考查的公式较多,掌握所有公式才能正确解题.本题属于中档题.21、(1)(2)(3)或【解析】
(1)由题意,可知只要,即可使得方程有两个异号的实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年钢铁制品有限公司钢管扣件销售合同3篇
- 2024水电站施工排水与防水合同
- 2024年购物中心户外广告租赁合同
- 2024年限定荔枝种植区域承包协议
- 2024年甲乙双方关于石油勘探开发技术服务的合同
- 2024年物联网设备采购与系统集成合同2篇
- 2024年生物科技研究开发合同
- 2024年高标准物流服务承诺运输合同版B版
- 2024年租赁合同:办公场地
- 2024年高端润滑油产品购销综合合同版B版
- 中国脑卒中防治指导规范(2021 年版)
- 广州市番禺区2022-2023学年七年级上学期期末统考英语试题
- 土地生态学智慧树知到期末考试答案章节答案2024年东北农业大学
- 新概念第二册课文和单词
- 吾悦广场商场开业仪式开业庆典周年庆活动方案
- JJG 393-2018便携式X、γ辐射周围剂量当量(率)仪和监测仪
- 2023年6月新高考历史浙江卷试题真题答案解析版
- 人教新起点(一起)五年级英语上册全册知识点
- 幼儿园小班教案《垫子多玩》
- 2024年等离子切割机市场需求分析报告
- 高速公路服务区业态创新策划书
评论
0/150
提交评论