




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市麒麟区五中2025届高一下数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正四面体,是棱上的动点,设(),分别记与,所成角为,,则()A. B. C.当时, D.当时,2.已知平面向量,,且,则等于()A. B. C. D.3.已知数列满足,且,其前n项之和为,则满足不等式的最小整数n是()A.5 B.6 C.7 D.84.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.5.如图,圆O所在的平面,AB是圆O的直径,C是圆周上一点(与A、B均不重合),则图中直角三角形的个数是()A.1 B.2 C.3 D.46.若,,,点C在AB上,且,设,则的值为()A. B. C. D.7.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,748.在中,角的对边分别是,已知,则()A. B. C. D.或9.在递增的等比数列an中,a4,a6是方程x2A.2 B.±2 C.12 D.110.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,,则________.12.数列满足,则的前60项和为_____.13.已知数列的通项公式为是数列的前n项和,则______.14.设变量满足条件,则的最小值为___________15.直线的倾斜角为__________.16.若直线始终平分圆的周长,则的最小值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.18.若是的一个内角,且,求的值.19.在平面直角坐标系中,已知向量,.(1)求证:且;(2)设向量,,且,求实数的值.20.已知等差数列满足.(1)求的通项公式;(2)设等比数列满足,求的前项和.21.已知数列是等差数列,数列是等比数列,且,记数列的前项和为,数列的前项和为.(1)若,求序数的值;(2)若数列的公差,求数列的公比及.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】作交于时,为正三角形,,是与成的角,根据等腰三角形的性质,作交于,同理可得,当时,,故选D.2、B【解析】
先由求出,然后按照向量的坐标运算法则算出答案即可【详解】因为,,且所以,即,所以所以故选:B【点睛】若,则3、C【解析】
首先分析题目已知3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,求满足不等式|Sn﹣n﹣6|<的最小整数n.故可以考虑把等式3an+1+an=4变形得到,然后根据数列bn=an﹣1为等比数列,求出Sn代入绝对值不等式求解即可得到答案.【详解】对3an+1+an=4变形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到数列bn=an﹣1为首项为8公比为的等比数列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整数n=7故选C.【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列an﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.4、C【解析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.5、D【解析】
利用直径所对的圆周角为直角和线面垂直的判定定理和性质定理即可判断出答案.【详解】AB是圆O的直径,则AC⊥BC,由于PA⊥平面ABC,则PA⊥BC,即有BC⊥平面PAC,则有BC⊥PC,则△PBC是直角三角形;由于PA⊥平面ABC,则PA⊥AB,PA⊥AC,则△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,则△ACB是直角三角形.综上可知:此三棱锥P−ABC的四个面都是直角三角形.故选D.【点睛】本题考查直线与平面垂直的性质,考查垂直关系的推理与证明,属于基础题.6、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.7、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。8、B【解析】
由已知知,所以B<A=,由正弦定理得,==,所以,故选B考点:正弦定理9、A【解析】
先解方程求出a4,a6,然后根据等比数列满足【详解】∵a4,a6是方程x2-10x+16=0的两个根,∴a4+a6=10,a4【点睛】本题考查等比数列任意两项的关系,易错点是数列an为递增数列,那么又q>110、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.12、1830【解析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.13、【解析】
对数列的通项公式进行整理,再求其前项和,利用对数运算规则,可得到,从而求出,得到答案.【详解】所以所以.故答案为:.【点睛】本题考查对数运算公式,由数列的通项求前项和,数列的极限,属于中档题.14、-1【解析】
根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.15、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率16、9【解析】
平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.18、【解析】
本题首先可根据是的一个内角以及得出和,然后对进行平方并化简可得,最后结合即可得出结果.【详解】因为是的一个内角,所以,,因为,所以,,所以,所以.【点睛】本题考查同角三角函数关系的应用,考查的公式为,在运算的过程中一定要注意角的取值范围,考查推理能力,是简单题.19、(1)证明见解析(2)【解析】
(1)根据向量的坐标求出向量模的方法以及向量的数量积即可求解.(2)根据向量垂直,可得数量积等于,进而解方程即可求解.【详解】(1)证明:,,所以,因为,所以;(2)因为,所以,由(1)得:所以,解得.【点睛】本题考查了向量坐标求向量的模以及向量数量积的坐标表示,属于基础题.20、(1)(2)【解析】
(1)根据基本元的思想,将已知条件转化为的形式,列方程组,解方程组可求得的值.并由此求得数列的通项公式.(2)利用(1)的结论求得的值,根据基本元的思想,,将其转化为的形式,由此求得的值,根据等比数列前项和公式求得数列的前项和.【详解】解:(1)设的公差为,则由得,故的通项公式,即.(2)由(1)得.设的公比为,则,从而,故的前项和.【点睛】本小题主要考查利用基本元的思想解有关等差数列和等比数列的问题,属于基础题.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微电影制作合同协议书
- 企业人员聘用合同
- 承包合同企业承包经营合同
- 经济法合同管理专题练习题
- 开心果采购合同书
- 喷锚分项工程劳务分包合同
- 运输砂石合同范本简单
- 小区物业出售合同范本
- 工会代理合同范本
- (12)-小升初语文专题练习
- 《山谷回音真好听》名师课件(简谱)
- 2024公安机关人民警察高级执法资格考试题(解析版)
- 医院抗菌药物临时采购使用申请表
- 高考英语核心词汇1000个
- 校园海绵城市设计方案
- 3-6-多学科设计优化
- GB/T 4706.66-2024家用和类似用途电器的安全第66部分:泵的特殊要求
- GB/T 4706.1-2024家用和类似用途电器的安全第1部分:通用要求
- 2022年6月英语四级真题 第一套
- 《事故汽车常用零部件修复与更换判别规范》
- 2023-2024学年河南省安阳市殷都区八年级(下)期末数学试卷(含答案)
评论
0/150
提交评论