浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题含解析_第1页
浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题含解析_第2页
浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题含解析_第3页
浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题含解析_第4页
浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市咸祥中学2025届高一下数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2 B. C.6 D.2.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件3.已知,,则的值域为()A. B.C. D.4.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.5.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(

)A. B. C. D.6.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.7.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.8.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.9.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数10.若()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.12.已知等比数列的前项和为,,则的值是__________.13.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.14.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.15.数列满足,则的前60项和为_____.16.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.18.在中,,点D在边AB上,,且.(1)若的面积为,求CD;(2)设,若,求证:.19.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.20.已知,,函数.(1)求在区间上的最大值和最小值;(2)若函数在区间上是单调递增函数,求正数的取值范围.21.已知数列的前项和,且;(1)求它的通项.(2)若,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长2、A【解析】

“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.3、C【解析】

根据正弦型函数的周期性可求得最小正周期,从而可知代入即可求得所有函数值.【详解】由题意得,最小正周期:;;;;;且值域为:本题正确选项:【点睛】本题考查正弦型函数值域问题的求解,关键是能够确定函数的最小正周期,从而计算出一个周期内的函数值.4、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值5、C【解析】

利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、A【解析】因为,若,则,,故选A.7、B【解析】

根据直线的斜率等于倾斜角的正切值求解即可.【详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.8、D【解析】

利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.9、B【解析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.10、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【点睛】本题考查正弦定理和等比数列运用,有一定的综合性.12、1【解析】

根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.13、0.5【解析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.14、【解析】

直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.15、1830【解析】

由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.16、【解析】

根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【点睛】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)由正弦定理将边化为对应角的正弦值,即可求出结果;(2)由余弦定理和三角形的面积公式联立,即可求出结果.【详解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面积为.的周长为5+.【点睛】本题主要考查正弦定理和余弦定理解三角形,属于基础题型.18、(1)(2)证明见解析【解析】

(1)直接利用三角形的面积公式求得,再由余弦定理列方程求出结果;(2)两次利用正弦定理,结合两角差的正弦公式、二倍角的正弦公式进行恒等变换求出结果.【详解】(1)因为,即,又因为,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因为,则,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化简得展开并整理得【点睛】以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.19、(1);(2)2【解析】

(1)根据向量的数量积定义,结合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【详解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【点睛】本题考查余弦定理,余弦的倍角公式,涉及向量的数量积,属基础题.20、(1)(2)【解析】

(1)利用向量的数量积化简即可得,再根据,求出的范围结合图像即可解决.(2)根据(1)求出,再根据正弦函数的单调性求出的单调区间即可.【详解】解:(1)因为所以,所以,所以(2)解法一:令得因为函数在上是单调递增函数,所以存在,使得,所以有因为,所以所以,又因为,得所以从而有所以,所以解法二:由,得因为所以所以解得又所以【点睛】本题主要考查了正弦函数在给定区间是的最值以及根据根据函数的单调性求参数.属于中等题,解决本题的关键是记住正弦函数的单调性、最值等.21、(1)(2)【解析】

(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论