重庆市北岸区重点达标名校2024届中考数学全真模拟试题含解析_第1页
重庆市北岸区重点达标名校2024届中考数学全真模拟试题含解析_第2页
重庆市北岸区重点达标名校2024届中考数学全真模拟试题含解析_第3页
重庆市北岸区重点达标名校2024届中考数学全真模拟试题含解析_第4页
重庆市北岸区重点达标名校2024届中考数学全真模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市北岸区重点达标名校2024届中考数学全真模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁2.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A. B. C. D.3.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°4.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°5.下列运算正确的是()A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=16.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A. B. C. D.7.如图是某个几何体的三视图,该几何体是()A.圆锥 B.四棱锥 C.圆柱 D.四棱柱8.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元9.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是()A. B. C. D.10.的值是()A.1 B.﹣1 C.3 D.﹣3二、填空题(共7小题,每小题3分,满分21分)11.已知a2+1=3a,则代数式a+的值为.12.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.13.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.14.计算(+)(-)的结果等于________.15.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.16.因式分解:3a2-6a+3=________.17.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.三、解答题(共7小题,满分69分)18.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?19.(5分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.21.(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.求证:△ABE≌△CAD;求∠BFD的度数.22.(10分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7323.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程的解集(请直接写出答案).24.(14分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.2、B【解析】

画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.3、A【解析】

如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.4、A【解析】

解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.5、B【解析】

A、根据同底数幂的除法法则计算;

B、根据同底数幂的乘法法则计算;

C、根据积的乘方法则进行计算;

D、根据合并同类项法则进行计算.【详解】解:A、a6÷a3=a3,故原题错误;B、3a2•2a=6a3,故原题正确;C、(3a)2=9a2,故原题错误;D、2x2﹣x2=x2,故原题错误;故选B.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.6、A【解析】

作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.7、B【解析】

由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.8、D【解析】

可以用排除法求解.【详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【点睛】牢记科学记数法的规则是解决这一类题的关键.9、D【解析】

根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.10、B【解析】

直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,=﹣1.故选:B.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

根据题意a2+1=1a,整体代入所求的式子即可求解.【详解】∵a2+1=1a,∴a+=+===1.故答案为1.12、1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.【详解】∵一组数据4,x,1,y,7,9的众数为1,∴x,y中至少有一个是1,∵一组数据4,x,1,y,7,9的平均数为6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一个是1,另一个是6,∴这组数为4,1,1,6,7,9,∴这组数据的中位数是×(1+6)=1.1,故答案为:1.1.【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.13、【解析】

先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为:.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.14、2【解析】

利用平方差公式进行计算即可得.【详解】原式==5-3=2,故答案为:2.【点睛】本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.15、3.53×104【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,35300=3.53×104,故答案为:3.53×104.16、3(a-1)2【解析】

先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.17、75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.三、解答题(共7小题,满分69分)18、(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】

(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×.化简得:y=-5x+1.(2)依题意有:∵,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.19、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.20、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.21、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.试题解析:(1)∵△ABC为等边三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.22、AD的长约为225m,大楼AB的高约为226m【解析】

首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得,然后根据∠ADB的正切表示出AD的长,又由CD=96m,可得方程,解此方程即可求得答案.【详解】解:设大楼AB的高度为xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大楼AB的高度约为226m,AD的长约为225m.【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.23、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论