版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门科技中学高三第二次联考新高考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.2.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.3.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.5.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定6.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.7.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.8.已知为非零向量,“”为“”的()A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件9.若复数满足,则()A. B. C. D.10.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则11.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为()A.10 B.50 C.60 D.14012.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.14.已知函数,且,,使得,则实数m的取值范围是______.15.设函数在区间上的值域是,则的取值范围是__________.16.在二项式的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.18.(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.19.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.20.(12分)2019年9月26日,携程网发布《2019国庆假期旅游出行趋势预测报告》,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的分布列及数学期望.21.(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.22.(10分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.2、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.3、B【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.4、D【解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.5、C【解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.6、D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.7、B【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.8、B【解析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.9、C【解析】
把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.10、D【解析】试题分析:,,故选D.考点:点线面的位置关系.11、C【解析】从频率分布直方图可知,用水量超过15m³的住户的频率为,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C12、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.14、【解析】
根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【详解】解:依题意,,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【点睛】本题考查了分段函数的值域求参数的取值范围,属于中档题.15、.【解析】
配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【点睛】本题考查函数值域,考查数形结合思想,属于基础题.16、60【解析】
直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据正弦定理到,得到答案.(2)计算,再利用余弦定理计算得到答案.【详解】(1)由,可得,因为,所以,所以.(2),又因为,所以.因为,所以,即.【点睛】本题考查了正弦定理和余弦定理,意在考查学生的计算能力.18、(1);(2)见解析.【解析】
(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;(2)先求出数列的通项,再利用裂项相消法求出即可.【详解】(1)由已知,,即,又,则数列是以1为首项3为公差的等差数列,所以,即.(2)因为,则,所以,又是递增数列,所以,综上,.【点睛】本题考查由递推公式求数列通项公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.19、(1)(2)【解析】
(1)依题意,任意角的三角函数的定义可知,,进而求出.在利用余弦的和差公式即可求出.(2)根据钝角的终边与单位圆交于点,且点的横坐标是,得出,进而得出,利用正弦的和差公式即可求出,结合为锐角,为钝角,即可得出的值.【详解】解:因为锐角的终边与单位圆交于点,点的纵坐标是,所以由任意角的三角函数的定义可知,.从而.(1)于是.(2)因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以从而.【点睛】本题本题考查正弦函数余弦函数的定义,考查正弦余弦的两角和差公式,是基础题.20、(1),乙公司影响度高;(2)见解析,【解析】
(1)利用各小矩形的面积和等于1可得a,由导游人数为40人可得b,再由总收人不低于40可计算出优秀率;(2)易得总收入在中甲公司有4人,乙公司有2人,则甲公司的人数的值可能为1,2,3,再计算出相应取值的概率即可.【详解】(1)由直方图知,,解得,由频数分布表中知:,解得.所以,甲公司的导游优秀率为:,乙公司的导游优秀率为:,由于,所以乙公司影响度高.(2)甲公司旅游总收入在中的有人,乙公司旅游总收入在中的有2人,故的可能取值为1,2,3,易知:,;.所以的分布列为:123P.【点睛】本题考查频率分布直方图、随机变量的分布列与期望,考查学生数据处理与数学运算的能力,是一道中档题.21、(1)见解析(2).【解析】
(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,,,,分别为边,,,,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度白蚁防治与建筑安全白蚁预防工程合同
- 2025年度股东股权分配与公司知识产权许可授权合同
- 2025年度红木家具定制销售与售后服务满意度调查合同
- 2025年度员工外出公务免责及责任追溯合同
- 农业机械租赁国际化考核试卷
- 外汇交易中的风险偏好评估考核试卷
- 低温仓储与冷冻方便食品运输考核试卷
- 线打扣机课程设计
- 语言学概论课程设计论文
- 2025-2030全球数据保护官即服务行业调研及趋势分析报告
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- GB/T 12684-2006工业硼化物分析方法
- 定岗定编定员实施方案(一)
- 高血压患者用药的注意事项讲义课件
- 特种作业安全监护人员培训课件
- (完整)第15章-合成生物学ppt
- 太平洋战争课件
- 封条模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖浆
- 货代操作流程及规范
- 常暗之厢(7规则-简体修正)
评论
0/150
提交评论