2025届邢台市重点中学高一数学第二学期期末学业水平测试试题含解析_第1页
2025届邢台市重点中学高一数学第二学期期末学业水平测试试题含解析_第2页
2025届邢台市重点中学高一数学第二学期期末学业水平测试试题含解析_第3页
2025届邢台市重点中学高一数学第二学期期末学业水平测试试题含解析_第4页
2025届邢台市重点中学高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届邢台市重点中学高一数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关2.已知,集合,则A. B. C. D.3.在三棱锥中,,,,平面平面,则三棱锥外接球的表面积为()A. B. C. D.4.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)5.在△ABC中,如果,那么cosC等于()A. B. C. D.6.已知数列满足,,则()A.4 B.-4 C.8 D.-87.已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.其中正确结论的个数是()A.1 B.2 C.3 D.48.阅读程序框图,运行相应的程序,输出的结果为()A. B. C. D.9.在四边形中,,且·=0,则四边形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形10.经过平面外一点和平面内一点与平面垂直的平面有()A.1个 B.2个 C.无数个 D.1个或无数个二、填空题:本大题共6小题,每小题5分,共30分。11.设为虚数单位,复数的模为______.12.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.13.已知,均为锐角,,,则______.14.在中,角的对边分别为,若,则角________.15._____________.16.某四棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该四棱锥最长棱的棱长为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,为内一点,.(1)若,求;(2)若,求的面积.18.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.19.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.20.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.21.已知(1)求的值;(2)求的最小值以及取得最小值时的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.2、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3、D【解析】

结合题意,结合直线与平面垂直的判定和性质,得到两个直角三角形,取斜边的一半,即为外接球的半径,结合球表面积计算公式,计算,即可.【详解】过P点作,结合平面ABC平面PAC可知,,故,结合可知,,所以,结合所以,所以,故该外接球的半径等于,所以球的表面积为,故选D.【点睛】考查了平面与平面垂直的性质,考查了直线与平面垂直的判定和性质,难度偏难.4、A【解析】

由题意可得,,求解即可.【详解】,解得或,故解集为(-,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.5、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D6、C【解析】

根据递推公式,逐步计算,即可求出结果.【详解】因为数列满足,,所以,,.故选C【点睛】本题主要考查由递推公式求数列中的项,逐步代入即可,属于基础题型.7、C【解析】

根据函数最小正周期可求得,由函数图象平移后为奇函数,可求得,即可得函数的解析式.再根据正弦函数的对称性判断①②,利用函数的单调区间判断③,由正弦函数的图象与性质判断④即可.【详解】函数的最小正周期是则,即向右平移个单位可得由为奇函数,可知解得因为所以当时,则对于①,当时,代入解析式可得,即点不为对称中心,所以①错误;对于②,当时带入的解析式可得,所以函数的图象关于直线对称,所以②正确;对于③,的单调递减区间为解得当时,单调递减区间为,而,所以函数在上是减函数,故③正确;对于④,当时,由正弦函数的图像与性质可知,,故④正确.综上可知,正确的为②③④故选:C【点睛】本题考查根据三角函数性质和平移变换求得解析式,再根据正弦函数的图像与性质判断选项,属于基础题.8、D【解析】

按照程序框图运行程序,直到时输出结果即可.【详解】按照程序框图运行程序输入,,则,满足,,则,满足,,则,满足,,则,满足,,则,满足,,则,不满足,输出故选:【点睛】本题考查根据程序框图计算输出结果的问题,属于基础题.9、A【解析】

由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.10、D【解析】

讨论平面外一点和平面内一点连线,与平面垂直和不垂直两种情况.【详解】(1)设平面为平面,点为平面外一点,点为平面内一点,此时,直线垂直底面,过直线的平面有无数多个与底面垂直;(2)设平面为平面,点为平面外一点,点为平面内一点,此时,直线与底面不垂直,过直线的平面,只有平面垂直底面.综上,过平面外一点和平面内一点与平面垂直的平面有1个或无数个,故选D.【点睛】借助长方体研究空间中线、面位置关系问题,能使问题直观化,降低问题的抽象性.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.13、【解析】

先求出,,再由,并结合两角和与差的正弦公式求解即可.【详解】由题意,可知,则,又,则,或者,因为为锐角,所以不成立,即成立,所以.故.故答案为:.【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.14、【解析】

根据得,利用余弦定理即可得解.【详解】由题:,,,由余弦定理可得:,.故答案为:【点睛】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.15、【解析】,故填.16、【解析】

先通过拔高法还原三视图为一个四棱锥,再根据图像找到最长棱计算即可。【详解】根据拔高法还原三视图,可得斜棱长最长,所以斜棱长为。【点睛】此题考查简单三视图还原,关键点通过拔高法将三视图还原易求解,属于较易题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)求出,,中由余弦定理即可求得;(2)设,利用正弦定理表示出,求得,利用面积公式即可得解.【详解】(1)在中,,为内一点,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),设,在中,,在中,由正弦定理,即,,所以,的面积.【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.18、(1);(2)【解析】

(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【详解】(1),解得:(2)又【点睛】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.19、(1)当m<2时,曲线C表示圆(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴当m<2时,曲线C表示圆;(2)圆C的圆心坐标为(﹣1,﹣2),半径为.∵直线l:y=x﹣m与圆C相切,∴,解得:m=±3,满足m<2.∴m=±3.【点评】本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.20、(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)【解析】

(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出.【详解】(1)由频率分布直方图得,这20个交通路段中,轻度拥堵的路段有(0.1+0.2)×1×20=6(个),中度拥堵的路段有(0.25+0.2)×1×20=9(个),严重拥堵的路段有(0.1+0.05)×1×20=3(个).(2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为,,,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1.(3)记抽取的2个轻度拥堵路段为,,抽取的3个中度拥堵路段为,,,抽取的1个严重拥堵路段为,则从这6个路段中抽取2个路段的所有可能情况为:,共15种,其中至少有1个路段为轻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论