2025届北京市交通大学附属中学数学高一下期末教学质量检测试题含解析_第1页
2025届北京市交通大学附属中学数学高一下期末教学质量检测试题含解析_第2页
2025届北京市交通大学附属中学数学高一下期末教学质量检测试题含解析_第3页
2025届北京市交通大学附属中学数学高一下期末教学质量检测试题含解析_第4页
2025届北京市交通大学附属中学数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市交通大学附属中学数学高一下期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2402.l:的斜率为A.﹣2 B.2 C. D.3.的值为()A.1 B. C. D.4.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.5.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.6.设,,均为正实数,则三个数,,()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于27.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂种颜色,则2个矩形颜色不同的概率为()A.13 B.12 C.29.在中,若,则的形状是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形10.已知函数,给出下列四个结论:①函数满足;②函数图象关于直线对称;③函数满足;④函数在是单调增函数;其中正确结论的个数是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解为_______.12.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.13.已知为第二象限角,且,则_________.14.已知数列中,其中,,那么________15.向量.若向量,则实数的值是________.16.已知等比数列的公比为2,前n项和为,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的值域为A,.(1)当的为偶函数时,求的值;(2)当时,在A上是单调递增函数,求的取值范围;(3)当时,(其中),若,且函数的图象关于点对称,在处取得最小值,试探讨应该满足的条件.18.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求的概率.19.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.20.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.21.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求△ABC的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据分层抽样的性质,直接列式求解即可.【详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【点睛】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.2、B【解析】

先化成直线的斜截式方程即得直线的斜率.【详解】由题得直线的方程为y=2x,所以直线的斜率为2.故选:B【点睛】本题主要考查直线斜率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3、A【解析】

利用诱导公式将转化到,然后直接计算出结果即可.【详解】因为,所以.故选:A.【点睛】本题考查正切诱导公式的简单运用,难度较易.注意:.4、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.5、B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.6、D【解析】

由题意得,当且仅当时,等号成立,所以至少有一个不小于,故选D.7、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.8、C【解析】

由古典概型及概率计算公式得2个矩形颜色不同的概率为69【详解】用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂1种颜色,共32则2个矩形颜色不同共A3即2个矩形颜色不同的概率为69故选:C.【点睛】本题考查了古典概型及概率计算公式,属于基础题.9、D【解析】

,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.10、C【解析】

求出余弦函数的周期,对称轴,单调性,逐个判断选项的正误即可.【详解】函数,函数的周期为,所以①正确;时,,函数取得最大值,所以函数图象关于直线对称,②正确;函数满足即.所以③正确;因为时,,函数取得最大值,所以函数在上不是单调增函数,不正确;故选.【点睛】本题主要考查余弦函数的单调性、周期性以及对称轴等性质的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

把不等式转化为,即可求解.【详解】由题意,不等式,等价于,解得.即不等式的解为故答案为:.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.12、.【解析】

由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.13、.【解析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.14、1【解析】

由已知数列递推式可得数列是以为首项,以为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由,得,,则数列是以为首项,以为公比的等比数列,.故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.15、-3【解析】

试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题16、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)由函数为偶函数,可得,故,由此可得的值.(2)化简函数,求出,化简,由题意可知:,由此可得的取值范围.(3)由条件得,再由,,可得.由的图象关于点,对称求得,可得.再由的图象关于直线成轴对称,所以,可得,,由此求得满足的条件.【详解】解:(1)因为函数为偶函数,所以,得对恒成立,即,所以.(2),即,,由题意可知:得,∴.(3)又∵,,,不妨设,,则,其中,由函数的图像关于点对称,在处取得最小值得,即,故.【点睛】本题主要考查三角函数的奇偶性,单调性和对称性的综合应用,属于中档题.18、(1)(2)【解析】

(1)先设在B组中看不清的那个同学的分数为x,分别求得两组的平均数,再由平均数间的关系求解.(2)先求出从A组这5名学生中随机抽取2名同学所有方法数,再用列举的方法得到满足求的方法数,再由古典概型求解.【详解】(1)设在B组中看不清的那个同学的分数为x由题意得解得x=88所以在B组5个分数超过85的有3个所以得分超过85分的概率是(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,则所有共有共10个其中满足求的有:共6个故|的概率为

【点睛】本题主要考查了平均数和古典概型概率的求法,还考查了运算求解的能力,属于中档题.19、(1);(2).【解析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围.第三步:求出所求函数的值域(或最值).20、(1)的增区间是,(2)【解析】

(1)利用平面向量数量积的坐标表示公式、二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式可以函数的解析式化为正弦型函数解析式的形式,最后利用正弦型函数的单调性求出函数的单调递增区间;(2)根据(1)所得的结论和,可以求出角的值,利用三角形内角和定理可以求出角的值,再运用正弦定理可得出的值,最后利用三角形面积公式可以求出的面积..【详解】(1)令,解得∴的增区间是,(2)∵∴解得又∵∴中,由正弦定理得∴【点睛】本题考查了平面向量数量积的坐标表示公式,考查了二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式,考查了正弦定理和三角形面积公式,考查了数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论