版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集,集合,则=()A. B. C. D.2.若直线的倾斜角为,则的值为()A. B. C. D.3.已知是边长为的正三角形,若,则A. B.C. D.4.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.5.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.6.函数的对称轴不可能为()A. B. C. D.7.已知角的终边与单位圆交于点,则等于()A. B. C. D.8.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.9.若数列满足且,则使的的值为()A. B. C. D.10.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.11.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.12.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为正实数,若则的取值范围是__________.14.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.15.在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为______.16.函数在区间内有且仅有两个零点,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列中,,是和的等差中项.(1)求数列的通项公式;(2)记,求数列的前项和.18.(12分)已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.19.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.20.(12分)已知,,求证:(1);(2).21.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.22.(10分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.2、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.3、A【解析】
由可得,因为是边长为的正三角形,所以,故选A.4、B【解析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.5、A【解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.6、D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.7、B【解析】
先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.8、A【解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.9、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.10、B【解析】
由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.11、C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.12、B【解析】
画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据,可得,进而,有,而,令,得到,再用导数法求解,【详解】因为,所以,所以,所以,所以,令,,所以,当时,,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:【点睛】本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,14、【解析】
记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:故答案为:【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.15、【解析】
先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,,设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.16、【解析】
对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)用等比数列的首项和公比分别表示出已知条件,解方程组即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bn=an•log2an,求出bn,利用错位相减法求出Tn.【详解】(1)设数列的公比为,由题意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【点睛】本题考查等比数列的通项公式和等差中项的概念以及错位相减法求和,考查运算能力,属中档题.18、(1)(2)的最小值为1,此时直线:【解析】
(1)用直接法求轨迹方程,即设动点为,把已知用坐标表示并整理即得.注意取值范围;(2)设:,将其与曲线的方程联立,消元并整理得,设,,则可得,,由求出,将直线方程与联立,得,求得,计算,设.显然,构造,由导数的知识求得其最小值,同时可得直线的方程.【详解】(1)设,则,即整理得(2)设:,将其与曲线的方程联立,得即设,,则,将直线:与联立,得∴∴设.显然构造在上恒成立所以在上单调递增所以,当且仅当,即时取“=”即的最小值为1,此时直线:.(注:1.如果按函数的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)【点睛】本题考查求轨迹方程,考查直线与椭圆相交中的最值.直线与椭圆相交问题中常采用“设而不求”的思想方法,即设交点坐标为,设直线方程,直线方程与椭圆方程联立并消元,然后用韦达定理得(或),把这个代入其他条件变形计算化简得出结论,本题属于难题,对学生的逻辑推理、运算求解能力有一定的要求.19、(1),,.(2)当时,此时选择火车运输费最省;当时,此时选择飞机运输费用最省;当时,此时选择火车或飞机运输费用最省.【解析】
(1)将运费和损耗费相加得出总费用的表达式.(2)作差比较、的大小关系得出结论.【详解】(1),,.(2),故,恒成立,故只需比较与的大小关系即可,令,故当,即时,,即,此时选择火车运输费最省,当,即时,,即,此时选择飞机运输费用最省.当,即时,,,此时选择火车或飞机运输费用最省.【点睛】本题考查了常见函数的模型,考查了分类讨论的思想,属于基础题.20、(1)见解析;(2)见解析.【解析】
(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.21、(1);(2).【解析】
(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从产品到空间现代人对家居环境的消费认知变化
- 2025年中卫货运上岗证考试考哪些科目
- 2025年贵州货运从业资格试题及答案详解
- 企业员工福利政策中亲子健康的关注与支持措施
- 旅游计划方案(7篇)
- 儿童音乐剧的创作与表演技巧培训
- 健康教育在家庭健康管理中的作用与价值
- 儿童敏感肌肤的保养策略分享
- 《3 我的饮料我做主》(教学实录)-2023-2024学年四年级上册综合实践活动辽师大版
- 企业内部创新能力培养的路径与方法探讨
- 中建一局劳务分包合同范本
- 天津市河北区2023-2024学年高一上学期1月期末化学试题(解析版)
- 中考模拟作文“独享、分享、共享”写作指导及范文赏析
- 新疆三史和民族团结
- 中国文学经典导读智慧树知到答案2024年华东政法大学
- 少先队中队工作手册模板
- AQ 1066-2008 煤层瓦斯含量井下直接测定方法(正式版)
- 专题01:基础知识综合(解析版)-2022-2023学年七年级语文下学期期中专题复习(江苏专用)
- 云南省古城镇消防给水技术规程
- 2024年巴西太阳能光伏发电市场机会及渠道调研报告
- 科普知识·蚂蚁的家族
评论
0/150
提交评论