山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题含解析_第1页
山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题含解析_第2页
山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题含解析_第3页
山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题含解析_第4页
山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济宁市邹城一中2025届高一数学第二学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则t=()A.32 B.23 C.14 D.132.在正方体中,与棱异面的棱有()A.8条 B.6条 C.4条 D.2条3.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.4.已知平面平面,,点,,直线,直线,直线,,则下列四种位置关系中,不一定成立的是()A. B. C. D.5.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.6.在中,,,为的外接圆的圆心,则()A. B.C. D.7.过点且与直线垂直的直线方程是()A. B. C. D.8.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.99.过点斜率为-3的直线的一般式方程为()A. B.C. D.10.有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是()A.1000 B.1010 C.1015 D.1030二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是_______.12.不等式有解,则实数的取值范围是______.13.直线在轴上的截距是__________.14.在等比数列中,若,则__________.15.若角的终边经过点,则___________.16.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某小区有一块半径为米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛和一个等腰三角形的水池EDC,其中为圆心,在圆的直径上,在半圆周上.(1)设,征地面积为,求的表达式,并写出定义域;(2)当满足取得最大值时,建造效果最美观.试求的最大值,以及相应角的值.18.如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.19.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.20.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.21.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.2、C【解析】

在正方体12条棱中,找到与平行的、相交的棱,然后计算出与棱异面的棱的条数.【详解】正方体共有12条棱,其中与平行的有共3条,与与相交的有共4条,因此棱异面的棱有条,故本题选C.【点睛】本题考查了直线与直线的位置关系,考查了异面直线的判断.3、D【解析】

由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.4、D【解析】

平面外的一条直线平行平面内的一条直线则这条直线平行平面,若两平面垂直则一个平面内垂直于交线的直线垂直另一个平面,主要依据这两个定理进行判断即可得到答案.【详解】如图所示:由于,,,所以,又因为,所以,故A正确,由于,,所以,故B正确,由于,,在外,所以,故C正确;对于D,虽然,当不一定在平面内,故它可以与平面相交、平行,不一定垂直,所以D不正确;故答案选D【点睛】本题考查线面平行、线面垂直、面面垂直的判断以及性质应用,要求熟练掌握定理是解题的关键.5、A【解析】

可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式6、A【解析】

利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.7、D【解析】

由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【点睛】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.8、B【解析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.9、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.10、B【解析】

把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展开,将a1+a2+a3+…+a2015=425,代入化简得:=1005,由于数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出.【详解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展开可得:+2(a1+a2+…+a2015)+2015=3870,把a1+a2+a3+…+a2015=425,代入化简可得:=1005,∵数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,∴有穷数列a1,a2,a3,…,a2015中值为0的项数等于2015﹣1005=1.故选B.【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.12、【解析】

由参变量分离法可得知,由二倍角的余弦公式以及二次函数的基本性质求出函数的最小值,即可得出实数的取值范围.【详解】不等式有解,等价于存在实数,使得关于的不等式成立,故只需.令,,由二次函数的基本性质可知,当时,该函数取得最小值,即,.因此,实数的取值范围是.故答案为:.【点睛】本题考查不等式有解的问题,涉及二倍角余弦公式以及二次函数基本性质的应用,一般转化为函数的最值来求解,考查计算能力,属于中等题.13、【解析】

把直线方程化为斜截式,可得它在轴上的截距.【详解】解:直线,即,故它在轴上的截距是4,故答案为:.【点睛】本题主要考查直线方程的几种形式,属于基础题.14、80【解析】

由即可求出【详解】因为是等比数列,所以,所以即故答案为:80【点睛】本题考查的是等比数列的性质,较简单15、3【解析】

直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【详解】由任意角三角函数的定义可得:.则故答案为3【点睛】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.16、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为,此时【解析】

(1)连接,在中,求出,进而求出面积以及角的范围;(2)令,再求出的范围,转化为二次函数即可求出最大值,以及相应角的值.【详解】(1)连接,在中,,(2),令,因为,所以,所以因为在上单调递增,所以时有最大值为,此时【点睛】本题主要考查三角函数与实际应用相结合,最终转化为二次函数进行求解,这类问题的特点是通过现实生活的事例考查解决问题的能力、仔细理解题,才能将实际问题转化为数学模型进行解答.18、(1)见解析;(2)见解析.【解析】试题分析:(1)设,连接,因为O,E分别为AC,中点,所以(2)平面,所以平面平面考点:线面平行垂直的判定点评:平面内一直线与平面外一直线平行,则线面平行;直线垂直于平面内两相交直线则直线垂直于平面,进而得到两面垂直19、(1)是偶函数(2)见解析(3)【解析】

(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.20、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2时,f(n)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.从而当x∈[1,2)时,f'(x)<1,f(x)递减;当x∈(2,+∞)时,f'(x)>1,f(x)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论