版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市第四十八中2025届高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以点和为直径两端点的圆的方程是()A. B.C. D.2.等差数列的首项为.公差不为,若成等比数列,则数列的前项和为()A. B. C. D.3.函数在上的图像大致为()A. B.C. D.4.若,则()A.0 B.-1 C.1或0 D.0或-15.如图,三棱柱中,侧棱底面ABC,,,,则异面直线与所成角的余弦值为()A. B. C. D.6.若且,则()A. B. C. D.7.下列函数中最小正周期为的是()A. B. C. D.8.已知为锐角,且满足,则()A. B. C. D.9.若,,,则的最小值为()A. B. C. D.10.直线的倾斜角为()A.30° B.60° C.120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.12.若直线与直线平行,则实数a的值是________.13.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.14.若向量与平行.则__.15.函数在的值域是__________________.16.已知当时,函数(且)取得最小值,则时,的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.18.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.19.如图,在四棱锥中,底面是正方形,底面,点是的中点,点是和的交点.(1)证明:平面;(2)求三棱锥的体积.20.正方体的棱长为点分别是棱的中点(1)证明:四边形是一个梯形:(2)求几何体的表面积和体积21.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
可根据已知点直接求圆心和半径.【详解】点和的中点是圆心,圆心坐标是,点和间的距离是直径,,即,圆的方程是.故选A.【点睛】本题考查了圆的标准方程的求法,属于基础题型.2、A【解析】
根据等比中项定义可得;利用和表示出等式,可构造方程求得;利用等差数列求和公式求得结果.【详解】由题意得:设等差数列公差为,则即:,解得:本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到等比中项、等差数列前项和公式的应用;关键是能够构造方程求出公差,属于常考题型.3、A【解析】
利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.4、D【解析】
由二倍角公式可得,即,从而分情况求解.【详解】易得,或.
由得.
由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.5、A【解析】
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知求与的坐标,由两向量所成角的余弦值求解异面直线与所成角的余弦值.【详解】如图,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知得:,,所以,.设异面直线与所成角,则故异面直线与所成角的余弦值为.故选:A【点睛】本题主要考查了利用空间向量求解线线角的问题,属于基础题.6、A【解析】
利用同角的三角函数关系求得,再根据正弦的二倍角公式求解即可【详解】由题,因为,,所以或,因为,所以,则,所以,故选:A【点睛】本题考查正弦的二倍角公式的应用,考查同角的三角函数关系的应用,考查已知三角函数值求三角函数值问题7、C【解析】
对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.8、D【解析】
由,得,,即可得到本题答案.【详解】由,得,所以,,所以.故选:D【点睛】本题主要考查两角和的正切公式的应用以及特殊角的三角函数值.9、B【解析】
根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.10、D【解析】
由直线方程得到直线斜率,进而得到其倾斜角.【详解】因直线方程为,所以直线的斜率,故其倾斜角为150°.故选D【点睛】本题主要考查求直线的倾斜角,熟记定义即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.12、0【解析】
解方程即得解.【详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【点睛】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.13、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.14、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【详解】由题意,向量与平行,所以,解得.故答案为.【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.15、【解析】
利用反三角函数的性质及,可得答案.【详解】解:,且,,∴,故答案为:【点睛】本题主要考查反三角函数的性质,相对简单.16、3【解析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差数列和等比数列的通项公式可计算出数列、的通项公式;(2)令可得出的值,再令,由得出,两式相减可求出,于此得出数列的通项公式.【详解】(1)由题意得,,,解得,且,,,,,且,整理得,解得,,,由等比数列的通项公式可得;(2)由题意可知,对任意的,.当时,,;当时,由,可得,上述两式相减得,即,.不适合上式,因此,.【点睛】本题考查等差数列、等比数列通项公式的求解,以及利用作差法求数列通项,解题时要结合数列递推式的结构选择合适的方法求解,考查运算求解能力,属于中等题.18、(1)(2);(3).【解析】
(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)证明见解析;(2).【解析】
(1)在中,利用中位线性质得到,证明平面.(2)直接利用体积公式得到答案.【详解】在中,点是的中点,底面是正方形点为中点根据中位线性质得到,平面,故平面.(2)底面【点睛】本题考查了线面平行,三棱锥体积,意在考查学生的计算能力和空间想象能力.20、(1)证明见解析(2)表面积为,体积为【解析】
(1)在正方体中,根据分别是棱的中点,由中位线得到且,又由,根据公理4平行关系的传递性得证.(2)几何体的表面积,上下底是直角三角形,三个侧面,有两个是全等的直角梯形,另一个是等腰梯形求解,体积按照棱台体积公式求解.【详解】(1)如图所示:在正方体中,因为分别是棱的中点,所以且,又因为,所以且,所以四边形是一个梯形.(2)几何体的表面积为:.体积为:.【点睛】本题主要考查几何体中的截面问题,还考查了空间想象,抽象概括,推理论证的能力,属于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级数学计算题专项练习汇编及答案
- 二年级语文上册教案第一单元
- 《电气控制系统设计与装调》教案 项目七任务二:自吸泵电动机控制线路的设计与安装
- 【初中物理】密度的利用同步训练+-2024-2025学年人教版物理八年级上册
- 家用电烹饪烤箱产品供应链分析
- 制搪瓷机械市场发展预测和趋势分析
- 块墨烟灰墨产业规划专项研究报告
- 垃圾处理焚化炉产业规划专项研究报告
- 工业用真空吸尘器市场发展预测和趋势分析
- 屠宰机产业深度调研及未来发展现状趋势
- CNAS-SC180:2023 食品安全管理体系认证机构认可方案
- 小学智力七巧板低中高各年级比赛试题
- 血常规考试题库含答案全套
- JGT215-2017 建筑门窗五金件 多点锁闭器
- 2023年表彰大会运动员发言稿
- 十字头夹具设计说明书
- 气动人工肌肉系统的静动态特性分析
- 保安人员安全巡查记录表范本
- 2023年好医生继续教育公共必修课《医务人员职业素质修养与执业法律知识》题库
- 2023年军队文职考试《数学1》真题
- XX医院按病种付费(DIP)工作实施方案(按病种分值付费(DIP)实施工作流程)
评论
0/150
提交评论