2025届安徽合肥八中数学高一下期末考试试题含解析_第1页
2025届安徽合肥八中数学高一下期末考试试题含解析_第2页
2025届安徽合肥八中数学高一下期末考试试题含解析_第3页
2025届安徽合肥八中数学高一下期末考试试题含解析_第4页
2025届安徽合肥八中数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽合肥八中数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,,则()A. B.C. D.2.设平面向量,,若,则等于()A. B. C. D.3.若角α的终边经过点P(-1,1A.sinα=1C.cosα=24.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断5.已知直线与圆相切,则的值是()A.1 B. C. D.6.球是棱长为的正方体的内切球,则这个球的体积为()A. B. C. D.7.在中,角、、所对的边分别为、、,如果,则的形状是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形8.函数的部分图像如图所示,则当时,的值域是()A. B.C. D.9.与直线垂直于点的直线的一般方程是()A. B. C. D.10.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.30二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为___________.12.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______13.已知是边长为4的等边三角形,为平面内一点,则的最小值为__________.14.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.15.(理)已知函数,若对恒成立,则的取值范围为.16.已知函数,则函数的最小值是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过18.如图,为圆的直径,点,在圆上,,矩形和圆所在的平面互相垂直,已知,.(1)求证:平面平面;(2)当时,求多面体的体积.19.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积20.在中,角对应的边分别是,且.(1)求的周长;(2)求的值.21.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

,.故选C.2、D【解析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】

利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.4、C【解析】

根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【点睛】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.5、D【解析】

利用直线与圆相切的条件列方程求解.【详解】因为直线与圆相切,所以,,,故选D.【点睛】本题考查直线与圆的位置关系,通常利用圆心到直线的距离与圆的半径的大小关系进行判断,考查运算能力,属于基本题.6、A【解析】

棱长为的正方体的内切球的半径,由此能求出其体积.【详解】棱长为的正方体的内切球的半径==1,体积.故选:A.【点睛】本题考查了正方体的内切球的性质和应用,属于基础题.7、C【解析】

结合正弦定理和三角恒等变换及三角函数的诱导公式化简即可求得结果【详解】利用正弦定理得,化简得,即,则或,解得或故的形状是等腰三角形或直角三角形故选:C【点睛】本题考查根据正弦定理和三角恒等变化,三角函数的诱导公式化简求值,属于中档题8、D【解析】如图,,得,则,又当时,,得,又,得,所以,当时,,所以值域为,故选D.点睛:本题考查由三角函数的图象求解析式.本题中,先利用周期求的值,然后利用特殊点(一般从五点内取)求的值,最后根据题中的特殊点求的值.值域的求解利用整体思想.9、A【解析】由已知可得这就是所求直线方程,故选A.10、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期公式可得函数的最小正周期.【详解】解:由题意可得:,可得函数的最小正周期为:,故答案为:.【点睛】本题主要考查二倍角的化简求值和三角函数周期性的求法,属于基础知识的考查.12、1.1【解析】

先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.13、-1.【解析】分析:可建立坐标系,用平面向量的坐标运算解题.详解:建立如图所示的平面直角坐标系,则,设,∴,易知当时,取得最小值.故答案为-1.点睛:求最值问题,一般要建立一个函数关系式,化几何最值问题为函数的最值,本题通过建立平面直角坐标系,把向量的数量积用点的坐标表示出来后,再用配方法得出最小值,根据表达式的几何意义也能求得最大值.14、【解析】

设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.15、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.16、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】

(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛】本题考查动点轨迹方程的求法,考查直线截圆所得弦长的计算以及动圆所过定点的问题,解决圆所过定点问题,关键是要将圆的方程求出来,对带参数的部分提公因式,转化为方程组求公共解问题.18、(1)证明见解析;(2)【解析】

(1)由题可得,,从而可得平面,由此证明平面平面;(2)过作交于,所以为四棱锥的高,多面体的体积,利用体积公式即可得到答案.【详解】(1)证明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵为圆的直径,∴,又,∴平面,∵平面,平面平面;(2)过作交于,由面面垂直性质可得平面,即为四棱锥的高,由是边长为1的等边三角形,可得,又正方形的面积为4,∴..所以.【点睛】本题主要考查面面垂直的证明,以及求多面体的体积,要求熟练掌握相应判定定理以及椎体、柱体的体积公式,属于中档题.19、(1)证明见解析;(2).【解析】

解法一:(1)取中点,连接,,证出,利用线面平行的判定定理即可证出.(2)取中点,连接,利用面面垂直的性质定理可得平面,过作于,可得平面,由即可求解.解法二:(1)取中点,连接,证出平面,平面,利用面面平行的判定定理可证出平面平面,再利用面面平行的性质定理即可证出.(2)取中点,连接,根据面面垂直的性质定理可得平面,再由,利用三棱锥的体积公式即可求解.【详解】解法一:(1)取中点,连接,.因为分别是的中点,所以,且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)取中点,连接,则,且,因为平面平面,平面平面,平面,所以平面同理,在平面内,过作于,则平面,且,因为为的中点,所以,所以,.解法二:(1)取中点,连接,因为为的中点,所以,因为平面,平面,所以平面.因为,且,所以四边形为平行四边形,故,因为平面,平面,所以平面,因为,平面,所以平面平面,因为平面,所以平面.(2)取中点,连接,依题意,为等边三角形,所以,且.因为平面平面,平面平面,平面,所以平面.因为是的中点,所以,所以.【点睛】本小题主要考查几何体的体积及、直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.20、(1)(2)【解析】

(1)由余弦定理求得,从而得周长;(2)由余弦定理求得,由平方关系得,同理得,然后由两角差的余弦公式得结论.【详解】解:(1)在中,,由余弦定理,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论