版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省阳山中学数学高一下期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.2.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e3.在中,设角的对边分别为.若,则是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形4.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.5.在ABC中,.则的取值范围是()A.(0,] B.[,) C.(0,] D.[,)6.已知向量,且,则m=()A.−8 B.−6C.6 D.87.等比数列的各项均为正数,且,则()A. B. C. D.8.甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.9.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.10.已知,,则点在直线上的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的单调增区间为________.12.若数列满足,则_____.13.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.14.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.15.已知等差数列满足,则__________.16.已知,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.18.如图为某区域部分交通线路图,其中直线,直线l与、、都垂直,垂足分别是点A、点B和点C(高速线右侧边缘),直线与、与的距离分别为1米、2千米,点M和点N分别在直线和上,满足,记.(1)若,求AM的长度;(2)记的面积为,求的表达式,并问为何值时,有最小值,并求出最小值;(3)求的取值范围.19.某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:单价(元)88.28.48.68.89销量(件)908483807568(1)求销量(件)关于单价(元)的线性回归方程;(2)若单价定为10元,估计销量为多少件;(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?参考公式:,.参考数据:,20.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.2、C【解析】
根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.3、D【解析】
根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形.【详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D.【点睛】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解.4、B【解析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.5、C【解析】
试题分析:由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.考点:三角形中正余弦定理的运用.6、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.7、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.8、B【解析】
先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【点睛】本题考查了古典概型,属基础题.9、D【解析】
求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.10、B【解析】
先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【点睛】本题考查了古典概型概率的计算公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,,由求出的关系,用表示,并把代入即得,后利用余弦函数的单调性可得增区间.【详解】设,,由得:,∴,,∵,∴,,即,令,得,∴增区间为.故答案为:.【点睛】本题考查新定义,正确理解新定义运算是解题关键.考查三角函数的单调性.利用新定义建立新老图象间点的联系,求出新函数的解析式,结合余弦函数性质求得增区间.12、【解析】
由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.13、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.14、或【解析】
由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15、【解析】
由等差数列的性质计算.【详解】∵是等差数列,∴,∴.故答案为:1.【点睛】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.16、.【解析】
在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.设平面的法向量为,则,即,取得到,故,故直线AN与平面PMN所成角的余弦值为.【点睛】本题考查了线面平行,线面夹角,意在考查学生的空间想象能力和计算能力.18、(1);(2),当时,;(3).【解析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根据的范围得出的最小值;(3)用含有的式子表示出,利用三角恒等变换和正弦函数的值域得出答案.【详解】(1)由题意可知:,即,,所以;(2),,,,,,,时,取得最大值1,;(3),由题意可知,令,.【点睛】本题考查三角函数的综合应用,考查逻辑思维能力和计算能力,考查对基本知识的掌握,考查分析能力,属于中档题.19、(1)(2)当销售单价定为10元时,销量为50件(3)要使利润达到最大,应将价格定位8.75元.【解析】
(1)由均值公式求得均值,,再根据给定公式计算回归系数,得回归方程;(2)在(1)的回归方程中令,求得值即可;(3)由利润可化为的二次函数,由二次函数知识可得利润最大值及此时的值.【详解】(1)由题意可得,,则,从而,故所求回归直线方程为.(2)当时,,故当销售单价定为10元时,销量为50件.(3)由题意可得,,.故要使利润达到最大,应将价格定位8.75元.【点睛】本题考查线性回归直线方程,解题时只要根据已知公式计算,计算能力是正确解答本题的基础.20、(1)(2)当时,;当时,;当时,【解析】
(1)利用,时单独讨论.求解.
(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【点睛】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.21、(1)(2)符合【解析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年跨境电商平台入驻及货款垫付合作协议3篇
- 2025版科技创新反担保合同与研发设备抵押协议3篇
- 医院与保险公司合同管理
- 畜牧业发展承诺书网上填报
- 废旧轮胎处理合同
- 艺术空间租赁协议
- 消防安全评估防水施工合同
- 古玩市场物业员工招聘合同
- 个人工作室客户意见箱管理方案
- 森林防火维护爆炸品库房管理方案
- 2024新版(外研版三起孙有中)三年级英语上册单词带音标
- 沙金矿承包开采合作协议书范文
- 2025届安徽省合肥市一六八中高二数学第一学期期末经典试题含解析
- 英语四级模拟试题(附答案)
- 自来水厂考试题库单选题100道及答案解析
- 2024智慧城市数据分类标准规范
- 教育学院院长述职报告范文
- 文玩交易合同(2篇)
- 智研咨询发布-2024年中国牛油果行业现状、发展环境及投资前景分析报告
- 杭州市西湖区2024年三年级数学第一学期期末学业质量监测试题含解析
- 眼视光学理论与方法智慧树知到答案2024年温州医科大学
评论
0/150
提交评论