版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市第二高级中学2025届高一数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)2.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.33.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,864.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.55.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为6.△ABC中,三个内角A,B,C所对应的边分别为a,b,c,若c=,b=1,∠B=,则△ABC的形状为()A.等腰直角三角形 B.直角三角形C.等边三角形 D.等腰三角形或直角三角形7.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列8.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.9.三棱锥则二面角的大小为()A. B. C. D.10.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④二、填空题:本大题共6小题,每小题5分,共30分。11.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.12.将十进制数30化为二进制数为________.13.已知等差数列的前三项为,则此数列的通项公式为______14.已知为锐角,,则________.15.不等式的解集为______.16.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过18.在平面直角坐标系中,已知射线与射线,过点作直线l分别交两射线于点A、B(不同于原点O).(1)当取得最小值时,直线l的方程;(2)求的最小值;19.已知数列是公差不为0的等差数列,成等比数列.(1)求;(2)设,数列的前n项和为,求20.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.21.如图1所示,在四边形中,,且,,.(1)求的面积;(2)若,求的长.图1图2
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
根据题意,,,,则有,因此,,不难判断.【详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.3、B【解析】
根据茎叶图的数据,选择对应的众数和中位数即可.【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.4、B【解析】
先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【点睛】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.5、C【解析】
由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【点睛】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.6、D【解析】试题分析:在中,由正弦定理可得,因为,所以或,所以或,所以的形状一定为等腰三角形或直角三角形,故选D.考点:正弦定理.7、C【解析】
依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。8、D【解析】
由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.9、B【解析】
P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【点睛】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.10、C【解析】试题分析:对于①中的函数而言,,对于③中的函数而言,,由“同簇函数”的定义而知,互为“同簇函数”的若干个函数的振幅相等,将②中的函数向左平移个单位长度,得到的新函数解析式为,故选C.考点:1.新定义;2.三角函数图象变换二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.12、【解析】
利用除取余法可将十进制数化为二进制数.【详解】利用除取余法得因此,,故答案为.【点睛】本题考查将十进制数转化为二进制数,将十进制数转化为进制数,常用除取余法来求解,考查计算能力,属于基础题.13、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.14、【解析】
利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.15、【解析】
根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.16、0.4【解析】
根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】
(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛】本题考查动点轨迹方程的求法,考查直线截圆所得弦长的计算以及动圆所过定点的问题,解决圆所过定点问题,关键是要将圆的方程求出来,对带参数的部分提公因式,转化为方程组求公共解问题.18、(1);(2)6.【解析】
(1)设,,利用三点共线可得的关系,计算出后由基本不等式求得最小值.从而得直线方程;(2)由(1)中所设坐标计算出,利用基本不等式由(1)中所得关系可得的最小值,从而得的最小值.【详解】(1)设,,因为A,B,M三点共线,所以与共线,因为,,所以,得,即,,等号当且仅当时取得,此时直线l的方程为.(2)因为由,所以,当且仅当时取得等号,所以当时,取最小值6.【点睛】本题考查直线方程的应用,考查三点共线的向量表示,考查用基本不等式求最值.用基本不等式求最值时要根据目标函数的特征采取不同的方法,如(1)中用“1”的代换配凑出基本不等式的条件求得最值,(2)直接由已知应用基本不等式求最值.19、(1)(2)【解析】
(1)根据已知条件求出,再写出等差数列的通项得解;(2)利用分组求和求.【详解】解:(1)设数列的首项为,公差为,则.因为成等比数列,所以,化简得又因为,所以,又因为,所以.所以.(2)根据(1)可知,【点睛】本题主要考查等差数列通项的求法,考查等差等比数列前n项和的计算和分组求和,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)1;(1)此时,此时【解析】
(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上的最值.【详解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根据,可得=﹣,故.(1)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)=的图象.∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特种贵重物品搬运协议细则
- 2024年版房屋拆迁补偿合同
- 2024年版权许可使用合同协议
- 中专老师的工作计划范文
- 文明校园活动策划书(汇编15篇)
- 入职自我介绍集锦15篇
- 无源探测技术课程设计
- 植树节活动总结15篇
- 收银员的辞职报告范文集合10篇
- 小学数学骨干教师工作计划
- 有关原始股权买卖协议书通用(7篇)
- GB 31247-2014电缆及光缆燃烧性能分级
- 新旧公司法对照表
- 井底车场及硐室课件
- 小学生法制安全教育演讲稿6篇
- DL 5190.8-2019 电力建设施工技术规范 第8部分:加工配制
- 2023年邢台市眼科医院医护人员招聘笔试模拟试题及答案解析
- 开放是当代中国的鲜明标识 教学设计-高中政治统编版选择性必修一
- 三级医院医疗设备配置标准
- 幼儿园绘本故事:《想暖和的雪人》 课件
- 化纤织造行业-生产工艺流程简介课件
评论
0/150
提交评论