广西陆川县中学2025届高一下数学期末综合测试模拟试题含解析_第1页
广西陆川县中学2025届高一下数学期末综合测试模拟试题含解析_第2页
广西陆川县中学2025届高一下数学期末综合测试模拟试题含解析_第3页
广西陆川县中学2025届高一下数学期末综合测试模拟试题含解析_第4页
广西陆川县中学2025届高一下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西陆川县中学2025届高一下数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移2.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.3.角的终边经过点,那么的值为()A. B. C. D.4.已知数列an的前4项为:l,-12,13,A.an=C.an=5.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交6.如图是函数的部分图象,则下列命题中,正确的命题序号是①函数的最小正周期为②函数的振幅为③函数的一条对称轴方程为④函数的单调递增区间是⑤函数的解析式为A.③⑤ B.③④ C.④⑤ D.①③7.在直角梯形中,,为的中点,若,则A.1 B. C. D.8.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.369.已知函数,则不等式的解集为()A. B. C. D.10.已知中,,,若,则的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列的前项和,若,,则的通项公式为_____.12.等差数列{}前n项和为.已知+-=0,=38,则m=_______.13.己知函数,,则的值为______.14.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;15.设等差数列的前项和为,若,,则的最小值为______.16.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若直线与轴,轴的交点分别为,圆以线段为直径.(Ⅰ)求圆的标准方程;(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.18.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.19.已知三棱锥中,是边长为的正三角形,;(1)证明:平面平面;(2)设为棱的中点,求二面角的余弦值.20.已知,是第四象限角,求和的值.21.如图,是菱形,对角线与的交点为,四边形为梯形,,.(1)若,求证:平面;(2)求证:平面平面;(3)若,求直线与平面所成角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.2、D【解析】

根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.3、C【解析】,故选C。4、D【解析】

分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式【详解】正负相间用(-1)n-1表示,∴a故选D.【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律.5、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D6、A【解析】

根据图象求出函数解析式,根据三角函数型函数的性质逐一判定.【详解】由图象可知,,最大值为,,因为图象过点,,由,即可判定错,正确,由得对称轴方程为,,故正确;由,,,函数的单调递增区间是,故错;故选:A【点睛】本题主要考查了根据图象求正弦型函数函数的解析式,及正弦型函数的性质,属于中档题.7、B【解析】

连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.8、B【解析】试题分析:根据条件中职工总数和青年职工人数,以及中年和老年职工的关系列出方程,解出老年职工的人数,根据青年职工在样本中的个数,算出每个个体被抽到的概率,用概率乘以老年职工的个数,得到结果.设老年职工有x人,中年职工人数是老年职工人数的2倍,则中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个个体被抽到的概率是用分层抽样的比例应抽取×90=18人.故选B.考点:分层抽样点评:本题是一个分层抽样问题,容易出错的是不理解分层抽样的含义或与其它混淆.抽样方法是数学中的一个小知识点,但一般不难,故也是一个重要的得分点,不容错过9、B【解析】

先判断函数的单调性,把转化为自变量的不等式求解.【详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.10、A【解析】

根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。12、10【解析】

根据等差数列的性质,可得:+=2,又+-=0,则2=,解得=0(舍去)或=2.则,,所以m=10.13、1【解析】

将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.14、【解析】

根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.15、【解析】

用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.16、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】

(1)本题首先根据直线方程确定、两点坐标,然后根据线段为直径确定圆心与半径,即可得出圆的标准方程;(2)首先可根据题意得出圆心到直线的距离为,然后根据直线的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果。【详解】(1)令方程中的,得,令,得.所以点的坐标分别为.所以圆的圆心是,半径是,所以圆的标准方程为.(2)因为,圆的半径为,所以圆心到直线的距离为.若直线的斜率不存在,直线的方程为,符合题意.若直线的斜率存在,设其直线方程为,即.圆的圆心到直线的距离,解得.则直线的方程为,即.综上,直线的方程为或.【点睛】本题考查圆的标准方程与几何性质,考查直线和圆的位置关系,当直线与圆相交时,半径、弦长的一半以及圆心到直线距离可构成直角三角形,考查计算能力,在计算过程中要注意讨论直线的斜率是否存在,是中档题。18、(1);(2)【解析】

(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.19、(1)见解析(2)【解析】

(1)由题意结合正弦定理可得,据此可证得平面,从而可得题中的结论;(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,由空间向量的结论求得半平面的法向量,然后求解二面角的余弦值即可.【详解】(1)证明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,则设平面的一个法向量为则解得,,即设平面的一个法向量为则解得,,即由图可知二面角为锐角,所以二面角的余弦值为.【点睛】本题主要考查面面垂直的证明方法,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.20、,【解析】

利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.21、(1)证明见解析;(2)证明见解析;(3)【解析】

(1)取的中点,连接,,从而可得为平行四边形,即可证明平面;(2)只需证明平面.即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论