




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市长宁嘉定金山高三一诊考试新高考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.12.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.3.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17644.已知且,函数,若,则()A.2 B. C. D.5.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.6.设,,,则的大小关系是()A. B. C. D.7.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.函数(且)的图象可能为()A. B. C. D.9.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有10.的展开式中的系数为()A.-30 B.-40 C.40 D.5011.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.12.若复数(为虚数单位)的实部与虚部相等,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆关于直线的对称圆的方程为_____.14.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________15.已知向量,,,则__________.16.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).①;②这名学生中数学成绩在分以下的人数为;③这名学生数学成绩的中位数约为;④这名学生数学成绩的平均数为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.18.(12分)如图,在直三棱柱中,,,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.19.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.20.(12分)在,角、、所对的边分别为、、,已知.(1)求的值;(2)若,边上的中线,求的面积.21.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.2、A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.3、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.4、C【解析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.5、C【解析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.6、A【解析】
选取中间值和,利用对数函数,和指数函数的单调性即可求解.【详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.7、A【解析】依题意有的周期为.而,故应左移.8、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.9、C【解析】
根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.10、C【解析】
先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.11、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.12、C【解析】
利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出圆心关于直线的对称点,即可得解.【详解】的圆心为,关于对称点设为,则有:,解得,所以对称后的圆心为,故所求圆的方程为.故答案为:【点睛】此题考查求圆关于直线的对称圆方程,关键在于准确求出圆心关于直线的对称点坐标.14、【解析】
先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题15、3【解析】
由题意得,,再代入中,计算即可得答案.【详解】由题意可得,,∴,解得,∴.故答案为:.【点睛】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的运用.16、②③【解析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为,故④不正确.综上,说法正确的序号是②③.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果;(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.【详解】(1),由,记,,由,且时,,单调递减,,时,,单调递增,,由题意,方程有两个不同解,所以;(2)解法一:由(1)知,在区间上存在极大值点,且,所以的极大值为,记,则,因为,所以,所以时,,单调递减,时,,单调递增,所以,即函数的极大值不小于1.解法二:由(1)知,在区间上存在极大值点,且,所以的极大值为,因为,,所以.即函数的极大值不小于1.【点睛】本题考查导数研究函数的单调性,极值,考查学生综合分析能力与转化能力,是一道中档题.18、(1)证明见解析;(2).【解析】
(1)通过证明面,即可由线面垂直推证面面垂直;(2)根据面,将问题转化为求到面的距离,利用等体积法求点面距离即可.【详解】(1)因为棱柱是直三棱柱,所以又,所以面又,分别为AB,BC的中点所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即点到平面的距离等于点到平面的距离设点到面的距离为由(1)可知,面且在中,,易知由等体积公式可知即由得所以到平面的距离等于【点睛】本题考查由线面垂直推证面面垂直,涉及利用等体积法求点面距离,属综合中档题.19、(1)极大值是,无极小值;(2)【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【点睛】本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分析问题解决问题的能力,该题综合性强,难度大,对能力要求较高.20、(1)(2)答案不唯一,见解析【解析】
(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案.【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题.21、(1);(2);(3)见解析.【解析】
(1)由,能求出经过变换后得到的数阵;(2)由,,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过.【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广深铁路股份2024年度社会责任报告-ESG
- 2025游泳池防腐施工合同
- 语言表达的修辞解码知到课后答案智慧树章节测试答案2025年春湘潭大学
- 2025ss房屋装修合同书样本
- 2024年自然资源部第一海洋研究所招聘工作人员真题
- 2024年长沙县中医院招聘专业技术人员真题
- 2024年盐城市卫生健康委直属事业单位招聘专业技术人员真题
- 2024年通山县财政局所属事业单位招聘工作人员真题
- 2025劳动合同书模板2
- 贵港市养牛合同范本
- 小学一年级数学下册口算题卡
- 肝功能检查的试题及答案
- 2025年江苏城乡建设职业学院单招职业倾向性考试题库汇编
- DB32-T 339-2007中华绒螯蟹 一龄蟹种培育
- 排油烟管道施工方案
- 《页岩气 保压取心技术规范 第1部分:取心作业》
- 2025年中国陕西省保险现状分析及市场前景预测
- 七年级 人教版 地理 第八章《第二节 欧洲西部》课件 第三课时
- 电厂安全培训课件
- 天体运动中的三大模型(讲义)-2025年高考物理一轮复习(新教材新高考)
- 克缇奖金制度
评论
0/150
提交评论