版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省蛟河市朝鲜族中学高三第二次联考新高考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.2.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.13.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知平面向量满足与的夹角为,且,则实数的值为()A. B. C. D.5.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则6.若复数满足(是虚数单位),则的虚部为()A. B. C. D.7.己知集合,,则()A. B. C. D.8.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.59.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3 C.1或 D.-3或10.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.11.若的展开式中的系数之和为,则实数的值为()A. B. C. D.112.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件,则的取值范围为__________.14.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.15.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.16.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.18.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.19.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.20.(12分)已知函数.(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围.21.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.22.(10分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2、A【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.3、C【解析】
化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.4、D【解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.5、D【解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.6、A【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.7、C【解析】
先化简,再求.【详解】因为,又因为,所以,故选:C.【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.8、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.9、D【解析】
由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2)点到直线的距离.10、B【解析】
根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.11、B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.12、A【解析】
根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,,此时,,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.14、【解析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.15、4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.16、【解析】
根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且α+β=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18、(1)答案不唯一,具体见解析(2)【解析】
(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【详解】(1)由得或①当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.②当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化时,,变化情况如下表:10单调递增单调递减∴当时,取得最大值,,∴.∴的取值范围是.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.19、(1),中位数为;(2)新能源汽车平均每个季度的销售量为万台,以此预计年的销售量约为万台.【解析】
(1)根据频率分布直方图中所有矩形面积之和为可计算出的值,利用中位数左边的矩形面积之和为可求得销量的中位数的值;(2)利用每个矩形底边的中点值乘以相应矩形的面积,相加可得出销量的平均数,由此可预计年的销售量.【详解】(1)由于频率分布直方图的所有矩形面积之和为,则,解得,由于,因此,销量的中位数为;(2)由频率分布直方图可知,新能源汽车平均每个季度的销售量为(万台),由此预测年的销售量为万台.【点睛】本题考查利用频率分布直方图求参数、中位数以及平均数的计算,考查计算能力,属于基础题.20、(1)x=1(2)证明见解析(3)【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证,即证,即证,构造函数进而求证;(3)不等式对一切正实数恒成立,,设,分类讨论进而求解.【详解】解:(1)令,所以,当时,,在上单调递增;当时,,在单调递减;所以,所以的零点为.(2)由题意,,要证,即证,即证,令,则,由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立.(3)不等式对一切正实数恒成立,,设,,记,△,①当△时,即时,恒成立,故单调递增.于是当时,,又,故,当时,,又,故,又当时,,因此,当时,,②当△,即时,设的两个不等实根分别为,,又,于是,故当时,,从而在单调递减;当时,,此时,于是,即舍去,综上,的取值范围是.【点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.21、(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度可再生能源发电项目承建合同书4篇
- 吉林消防管道保温施工设备租赁与维护2025年合同2篇
- 2025版信用社个人股权质押贷款担保合同3篇
- 2025年度户外遮阳帘及安装服务合同模板4篇
- 2025年度粮油产品绿色供应链采购服务合同4篇
- 2025年度打印机故障快速响应与维修服务合同4篇
- 2025年度出国劳务派遣企业社会责任与员工权益保障合同4篇
- 2025年度茶园茶叶品牌形象设计与推广合同范本4篇
- 2025年度充电桩充电设施安装工程监理合同4篇
- 二零二五版餐厨垃圾无害化处理与回收利用合同3篇
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 2024年全国卷1高考理综试题及答案
- (完整版)金融市场基础知识知识点归纳-图文
- 五年级数学(小数乘除法)计算题专项练习及答案
- 小学数学知识结构化教学
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 饭店管理基础知识(第三版)中职PPT完整全套教学课件
评论
0/150
提交评论