




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省保山市一中2025届高一数学第二学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则下列等式一定成立的是()A. B. C. D.2.已知,且,则()A. B. C. D.3.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.34.设,,均为正实数,则三个数,,()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于25.已知函数和在区间I上都是减函数,那么区间I可以是()A. B. C. D.6.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.07.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.8.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.9.过点且与原点距离最大的直线方程是()A. B.C. D.10.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.____________.12.已知直线平分圆的周长,则实数________.13.平面四边形中,,则=_______.14.已知函数,的最小正周期是___________.15.设,若用含的形式表示,则________.16.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.四棱锥中,,,底面,,直线与底面所成的角为,、分别是、的中点.(1)求证:直线平面;(2)若,求证:直线平面;(3)求棱锥的体积.18.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.19.已知(且).(1)若,求的值;(2)若没有实数根,求的取值范围.20.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.21.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.2、A【解析】
根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【详解】因为,,所以,所以,所以.故选:A【点睛】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.3、D【解析】
先求出直线与坐标轴的交点,再求三角形的面积得解.【详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【点睛】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4、D【解析】
由题意得,当且仅当时,等号成立,所以至少有一个不小于,故选D.5、B【解析】
分别根据和的单调减区间即可得出答案.【详解】因为和的单调减区间分别是和,所以选择B【点睛】本题考查三角函数的单调性,意在考查学生对三角函数图像与性质掌握情况.6、C【解析】
根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.7、D【解析】
分别求出大圆面积和深色部分面积即可得解.【详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【点睛】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.8、A【解析】,向左平移个单位得到函数=,故9、A【解析】
当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。10、B【解析】
利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【详解】由题意得.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.12、1【解析】
由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】
先求出,再求出,再利用余弦定理求出AD得解.【详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.14、【解析】
先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【点睛】本题主要考查了对数的运算法则,属于中档题.16、【解析】
∵当时,仍是数列中的项,而数列是递增数列,∴,所以必有,,利用累加法可得:,故,得,故答案为.点睛:本题主要考查了数列的求和,解题的关键是单调性的利用以及累加法的运用,有一定难度;根据题中条件从中任取两项,当时,仍是数列中的项,结合递增数列必有,,利用累加法可得结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】
(1)由中位线定理可得,,再根据平行公理可得,,即可根据线面平行的判定定理证出;(2)根据题意可计算出,而是的中点,可得,又,即可根据线面垂直的判定定理证出;(3)根据等积法,即可求出.【详解】(1)证明:连接,,,、是、中点,,从而.又平面,平面,直线平面;(2)证明:,,.底面,直线与底面成角,..是的中点,.,.面,面,直线平面;(3)由题可知,,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理的应用,以及利用等积法求三棱锥的体积,意在考查学生的直观想象能力,逻辑推理能力和转化能力,属于基础题.18、(1)时,时,;(2);【解析】
(1)当时,求出,再利用错位相减法,求出的前项和;(2)求出的表达式,对,的大小进行分类讨论,从而求出数列的极限.【详解】(1)当时,可得,当时,得到,所以,当时,所以,两边同乘得上式减去下式得,所以所以综上所述,时,;时,.(2)由(1)可知当时,则;当时,则若,若,所以综上所述.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.19、(1);(2)【解析】
(1)由可构造方程求得结果;(2)根据一元二次方程无实根可知,解不等式求得结果.【详解】(1)(2)由题意知:无实数根,解得:或的取值范围为【点睛】本题考查根据函数值求解参数值、根据一元二次方程无实根求解参数范围的问题,涉及到一元二次不等式的求解问题,属于基础题.20、(1)最小正周期为.对称中心坐标为;(2)-1【解析】
(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省合肥市中考三模历史试题(含答案)
- 建立高效的建筑施工质量管理体系
- 2025年合作联盟合同模板
- 2025劳务派遣合作协议派遣类合作协议
- Napyradiomycin-A2-生命科学试剂-MCE
- IB课程HL化学实验设计2024-2025年模拟试卷-定量分析与变量控制实验数据分析
- 2025合同范本汽车买卖合同合同示例
- 2025合同模板 简约美容院劳动合同书范本
- 2025赠与合同公证样本
- 2025【合同范本】货物运输合同
- 基于改进型粒子群算法的机械臂时间最优轨迹规划研究
- 中石油春招试题及答案
- 水泥磨试题库及答案
- 预提费用管理制度
- 2025年湖北省襄阳市老河口市中考数学模拟试卷(4月份)
- 彩钢板屋面维修施工方案
- 2025年全国硕士研究生入学统一考试 (数学三) 真题及答案
- 课件:《马克思主义基本原理概论》(23版):第七章 共产主义崇高理想及其最终实现
- 新媒体编辑面试题及答案
- 2025年上海市高考英语热点复习:六选四句子还原之说明文(上)
- 2025年gmp 基础知识培训试题及答案
评论
0/150
提交评论