2025届浙江省杭州求是高级中学数学高一下期末检测试题含解析_第1页
2025届浙江省杭州求是高级中学数学高一下期末检测试题含解析_第2页
2025届浙江省杭州求是高级中学数学高一下期末检测试题含解析_第3页
2025届浙江省杭州求是高级中学数学高一下期末检测试题含解析_第4页
2025届浙江省杭州求是高级中学数学高一下期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州求是高级中学数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则2.已知是定义在上的奇函数,且满足,当时,,则等于()A.-1 B. C. D.13.在中,已知是边上一点,,,则等于()A. B. C. D.4.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.5.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.986.已知是函数的两个零点,则()A. B.C. D.7.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.2 B.3 C.4 D.58.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.49.圆的圆心坐标和半径分别是()A.,2 B.,1 C.,2 D.,110.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与圆相交于,两点,且(其中为原点),则的值为________.12.函数的部分图像如图所示,则的值为________.13.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.14.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.15.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=16.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c18.已知函数f1当a>0时,求函数y=f2若存在m>0使关于x的方程fx=m+119.已知同一平面内的三个向量、、,其中(1,2).(1)若||=2,且与的夹角为0°,求的坐标;(2)若2||=||,且2与2垂直,求在方向上的投影.20.如图,在四棱锥中,底面是矩形,平面,,.(1)求直线与平面所成角的正弦值;(2)若点分别在上,且平面,试确定点的位置21.在中,角,,所对的边分别为,,,.(1)求角的大小;(2)若,的面积为,求及的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.2、C【解析】

根据求得函数的周期,再结合奇偶性求得所求表达式的值.【详解】由于故函数是周期为的周期函数,故,故选C.【点睛】本小题主要考查函数的周期性,考查函数的奇偶性,考查函数值的求法,属于基础题.3、A【解析】

利用向量的减法将3,进行分解,然后根据条件,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选A.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.4、D【解析】

满足每个选项的条件时能否找到反例推翻结论即可。【详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【点睛】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。5、A【解析】

由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.6、A【解析】

在同一直角坐标系中作出与的图象,设两函数图象的交点,依题意可得,利用对数的运算性质结合图象即可得答案.【详解】解:,在同一直角坐标系中作出与的图象,

设两函数图象的交点,

则,即,

又,

所以,,即,

所以①;

又,故,即②,由①②得:,

故选:A.【点睛】本题考查根的存在性及根的个数判断,依题意可得是关键,考查作图能力与运算求解能力,属于难题.7、C【解析】开始,输入,则,判断,否,循环,,则,判断,否,循环,则,判断,否,循环,则,判断,是,输出,结束.故选择C.8、C【解析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【点睛】本题考查简单的线性规划,解题关键是作出可行域.9、B【解析】

将圆的一般方程配成标准方程,由此求得圆心和半径.【详解】由,得,所以圆心为,半径为.【点睛】本小题主要考查圆的一般方程化为标准方程,考查圆心和半径的求法,属于基础题.10、B【解析】

建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即

,从而可求λ的取值范围.【详解】

由题设,建立如图所示的空间直角坐标系D-xyz,

则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)

=(1,1,-1),∴

=(λ,λ,-λ),

=

+

=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)

=

+

=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)

显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0

∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得

<λ<1

因此,λ的取值范围是(

,1),故选B.

点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.12、【解析】

由图可得,,求出,得出,利用,然后化简即可求解【详解】由题图知,,所以,所以.由正弦函数的对称性知,所以答案:【点睛】本题利用函数的周期特性求解,难点在于通过图像求出函数的解析式和函数的最小正周期,属于基础题13、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.14、【解析】

将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.【详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共个,因此,所求的事件的概率为,故答案为.【点睛】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.15、1.【解析】

解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,16、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(8,62);(2)【解析】

(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【详解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有两解,∴bsin解得8<b<62,即b的取值范围为((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1)见解析;(2)a<-3-2【解析】

(1)将问题转化为解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,将问题转化为:关于x的方程ax2【详解】(1)由题意,fx=ax解方程ax-1x-1=0,得x1①当1a>1时,即当0<a<1时,解不等式ax-1x-1≥0,得此时,函数y=fx的定义域为②当1a=1时,即当a=1时,解不等式x-12此时,函数y=fx的定义域为③当1a<1时,即当a>1时,解不等式ax-1x-1≥0,解得此时,函数y=fx的定义域为(2)令t=m+1则关于x的方程fx=t有四个不同的实根可化为即ax2-解得a<-3-2【点睛】本题考查含参不等式的求解,考查函数的零点个数问题,在求解含参不等式时,找出分类讨论的基本依据,在求解二次函数的零点问题时,应结合图形找出等价条件,通过列不等式组来求解,考查分类讨论数学思想以及转化与化归数学思想,属于中等题。19、(1)(2,4)(2)【解析】

(1)由题意可得与共线,设出的坐标,根据||=2,求出参数的值,可得的坐标;

(2)由题意可得,再根据,求出

的值,可得在方向上的投影的值.【详解】(1)同一平面内的三个向量、、,其中(1,2),若||=2,且与的夹角为0°,则与共线,故可设(t,2t),t>0,∴2,∴t=2,即(2,4).(2)∵2||=||,即||.∵2与2垂直,∴(2)•(2)=2320,即83•20,即366,即•,∴在方向上的投影为.【点睛】本题主要考查两个向量坐标形式的运算,两个向量共线、垂直的性质,属于中档题.20、(1);(2)M为AB的中点,N为PC的中点【解析】

(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立空间直角坐标系,求平面PCD的一个法向量为,由空间向量的线面角公式求解即可;(2)设,利用平面PCD,所以∥,得到的方程,求解即可确定M,N的位置【详解】(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立如图所示的空间直角坐标系,则从而设平面PCD的法向量则即不妨取则.所以平面PCD的一个法向量为.设直线PB与平面PCD所成角为所以即直线PB与平面PCD所成角的正弦值为.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论