2025届重庆市江津区第六中学数学高一下期末调研试题含解析_第1页
2025届重庆市江津区第六中学数学高一下期末调研试题含解析_第2页
2025届重庆市江津区第六中学数学高一下期末调研试题含解析_第3页
2025届重庆市江津区第六中学数学高一下期末调研试题含解析_第4页
2025届重庆市江津区第六中学数学高一下期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市江津区第六中学数学高一下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在处取最小值,则等于()A.3 B. C. D.42.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.13.已知,则满足的关系式是A.,且 B.,且C.,且 D.,且4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.5.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.6.不等式的解集为,则不等式的解集为()A.或 B. C. D.或7.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为()A.7 B.8 C.9 D.108.已知,且,把底数相同的指数函数与对数函数图象的公共点称为(或)的“亮点”.当时,在下列四点,,,中,能成为的“亮点”有()A.0个 B.1个 C.2个 D.3个9.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④10.在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,则平面四边形OACB面积的最大值是()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.12.设等差数列,的前项和分别为,,若,则__________.13.若函数是奇函数,其中,则__________.14.已知是奇函数,且,则_______.15.______.16.已知变量,满足,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.18.已知为平面内不共线的三点,表示的面积(1)若求;(2)若,,,证明:;(3)若,,,其中,且坐标原点恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由.19.如图,三棱柱的侧面是边长为2的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.20.已知函数.(1)求的值及f(x)的对称轴;(2)将的图象向左平移个单位得到函数的图象,求的单调递增区间.21.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.2、C【解析】

由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【点睛】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.3、B【解析】

根据对数函数的性质判断.【详解】∵,∴,∵,∴,又,∴,故选B.【点睛】本题考查对数函数的性质,掌握对数函数的单调性是解题关键.4、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.5、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.6、A【解析】不等式的解集为,的两根为,,且,即,解得则不等式可化为解得故选7、B【解析】试题分析:设该女子第一天织布尺,则,解得,所以前天织布的尺数为,由,得,解得的最小值为,故选B.考点:等比数列的应用.8、C【解析】

利用“亮点”的定义对每一个点逐一分析得解.【详解】由题得,,由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”.故选C【点睛】本题主要考查指数和对数的运算,考查指数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解析】

根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.10、A【解析】

根据正弦和角公式化简得是正三角形,再将平面四边形OACB面积表示成的三角函数,利用三角函数求得最值.【详解】由已知得:即所以即又因为所以所以又因为所以是等边三角形.所以在中,由余弦定理得且因为平面四边形OACB面积为当时,有最大值,此时平面四边形OACB面积有最大值,故选A.【点睛】本题关键在于把所求面积表示成角的三角函数,属于难度题.二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】

利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).12、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.13、【解析】

定义域上的奇函数,则【详解】函数是奇函数,所以,又,则所以填【点睛】定义域上的奇函数,我们可以直接搭建方程,若定义域中则不能直接代指.14、【解析】

根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.15、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.16、0【解析】

画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】试题分析:(1)证明线线垂直,一般利用线面垂直性质定理,即利用线面垂直进行证明,而证明线面垂直,则利用线面垂直判定定理,即从已知的线线垂直出发给予证明,本题利用平几知识,如等边三角形性质、正方形性质得线线垂直,(2)求点到直线距离,一般方法利用等体积法转化为求高.试题解析:(1)等边中,为中点,又,且在正方形中,(2)中,,由(1)知,等体积法可得点到平面的距离为.18、(1);(2)详见解析;(3)是定值,值为,理由见解析.【解析】

(1)已知三点坐标,则可以求出三边长度及对应向量,由向量数量积公式可以求出夹角余弦值,从而算出正弦值,利用面积公式完成作答;(2)和(1)的方法一样,唯独不同在于(1)是具体值,而(2)中是参数,我们可以把参数当做整体(视为已知)能处理;(3)由恰好为的正心可以获取,而可以借助(2)的公式直接运用,本题也就完成作答.【详解】(1)因为,所以,,所以因为,所以,所以(2)因为,所以所以因为所以所以所以;(3)因为为的重心,所以由(1)可知又因为为的重心,所以,平方相加得:,即,所以所以,所以是定值,值为【点睛】已知三角形三点,去探究三角形面积问题,通过向量数量积为载体,算出相对应边所在向量的模长、夹角余弦值,进一步算出正弦值,从而算出面积,这三问存在层层递进的过程,从特殊到一般慢慢设问,非常好的一个探究性习题.19、(1)见解析(2)【解析】

(1)连结,交于点,连结,推导出,又,从而面,进而,推导出,由此能得到结论;(2)由题意,可证得是二面角的平面角,进而得,进而计算得,进而利用棱锥的体积公式计算即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以面而平面,所以,因为,所以,而,所以,故.(2)因为,为的中点,则,由(1)可知,因为,所以面,作,连结,由(1)知,所以且所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本题考查两个角相等的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.20、(1),;(2)。【解析】

(1)求得函数,代入即可求解的值,令,即可求得函数的对称轴的方程;(2)由(1),结合三角函数的图象变换,求得,再根据三角函数的性质,即可求解.【详解】(1)由函数,则,令,解得,即函数的对称轴的方程为(2)由(1)可知函数的图象向左平移个单位得到函数的图象,可得的图象,令,解得,所以函数的单调递增区间为.【点睛】本题主要考查了三函数的图象与性质,以及三角函数的图象变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论