浙江省衢州四校2025届高一下数学期末调研模拟试题含解析_第1页
浙江省衢州四校2025届高一下数学期末调研模拟试题含解析_第2页
浙江省衢州四校2025届高一下数学期末调研模拟试题含解析_第3页
浙江省衢州四校2025届高一下数学期末调研模拟试题含解析_第4页
浙江省衢州四校2025届高一下数学期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省衢州四校2025届高一下数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.15602.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.13.设的三个内角成等差数列,其外接圆半径为2,且有,则三角形的面积为()A. B. C.或 D.或4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.5.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件6.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点7.已知向量,则向量的夹角为()A. B. C. D.8.已知,,,,则下列等式一定成立的是()A. B. C. D.9.如图,在四棱锥中,底面为平行四边形,,,,,且平面,为的中点,则下列结论错误的是()A. B.C.平面平面 D.三棱锥的体积为10.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,公比,若,则的值为.12.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.13.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.14.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.15.已知,均为单位向量,它们的夹角为,那么__________.16.已知数列是等差数列,,那么使其前项和最小的是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.18.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.20.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:日期1月11号1月12号1月13号1月14号1月15号平均气温()91012118销量(杯)2325302621(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出关于的线性回归方程式;(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.(参考公式:,)21.为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:第一小组第二小组(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:食材的加热时间(单位:)营养成分保留百分比在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.附注:参考数据:,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.2、D【解析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质3、C【解析】

的三个内角成等差数列,可得角A、C的关系,将已知条件中角C消去,利用三角函数和差角公式展开即可求出角A的值,再由三角形面积公式即可求得三角形面积.【详解】的三个内角成等差数列,则,解得,所以,所以,整理得,则或,因为,解得或.①当时,;②当时,,故选C.【点睛】本题考查了三角形内角和定理、等差数列性质、三角函数和差角公式、三角函数辅助角公式,综合性较强,属于中档题;解题中主要是通过消元构造关于角A的三角方程,其中利用三角函数和差角公式和辅助角公式对式子进行化解是解题的关键.4、A【解析】

由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.5、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题6、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.7、C【解析】试题分析:,设向量的夹角为,考点:向量夹角及向量的坐标运算点评:设夹角为,8、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.9、B【解析】

根据余弦定理可求得,利用勾股定理证得,由线面垂直性质可知,利用线面垂直判定定理可得平面,利用线面垂直性质可知正确;假设正确,由和假设可证得平面,由线面垂直性质可知,从而得到,显然错误,则错误;由面面垂直判定定理可证得正确;由可求得三棱锥体积,知正确,从而可得选项.【详解】,,平面,平面又平面,平面平面,则正确;若,又且平面,平面平面又,与矛盾,假设错误,则错误;平面,平面又平面平面平面,则正确;为中点,,则正确本题正确选项:【点睛】本题考查立体几何中相关命题的判断,涉及到线面垂直的判定与性质定理的应用、面面垂直关系的判定、三棱锥体积的求解等知识,是对立体几何部分的定理的综合考查,关键是能够准确判定出图形中的线面垂直关系.10、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

因为,,故答案为1.考点:等比数列的通项公式.12、6【解析】

设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.13、【解析】

先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】

联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【点睛】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.15、.【解析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).16、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得.∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1.18、(1),;(2)最大值为,最小值为【解析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【点睛】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.19、(1),(2)【解析】

(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.20、(1);(2);(3)19杯.【解析】试题分析:(1)由“选取的组数据恰好是相邻天的数据”为事件,得出基本事件的总数,利用古典概型,即可求解事件的概率;(2)由数据求解,求由公式,求得,即可求得回归直线方程;(3)当,代入回归直线方程,即可作出预测的结论.试题解析:(Ⅰ)设“选取的组数据恰好是相邻天的数据”为事件,所有基本事件(其中,为月份的日期数)有种,事件包括的基本事件有,,,共种.所以.(Ⅱ)由数据,求得,.由公式,求得,,所以关于的线性回归方程为.(Ⅲ)当时,.所以该奶茶店这种饮料的销量大约为杯.21、(1)中位数为,平均数为,中位数更适合描述第一小组打分的情况;(2)由可知第二小组的打分人员更像是由营养专家组成;(3)散点图见解析;回归直线为:;的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【解析】

(1)将第一小组打分按从小到大排序,根据中位数和平均数的计算方法求得中位数和平均数;由于存在极端数据,可知中位数更适合描述第一小组打分情况;(2)分别计算两组数据的方差,由可知第二小组打分相对集中,其更像是由营养专家组成;(3)由已知数据画出散点图;利用最小二乘法计算可得回归直线;根据的含义,可确定斜率的含义.【详解】(1)第一小组的打分从小到大可排序为:,,,,,,,则中位数为:平均数为:可发现第一小组中出现极端数据,会造成平均数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论