版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市惠东县燕岭学校2025届数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数a、b满足条件,则下列不等式一定成立的是A. B. C. D.2.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.3.已知扇形圆心角为,面积为,则扇形的弧长等于()A. B. C. D.4.函数的图象大致为()A. B. C. D.5.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.96.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个7.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=08.函数f(x)=4A.2kπ+π6C.2kπ+π129.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含10.过点P(﹣2,m)和Q(m,4)的直线斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或4二、填空题:本大题共6小题,每小题5分,共30分。11.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.12.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.13.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.14.若一组样本数据,,,,的平均数为,则该组样本数据的方差为15.已知正实数满足,则的最小值为__________.16.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.18.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.19.(1)证明:;(2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,;(3)利用(2)的结论判断是否为有理数?20.已知.(1)若对任意的,不等式上恒成立,求实数的取值范围;(2)解关于的不等式.21.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据题意,由不等式的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A、,时,有成立,故A错误;对于B、,时,有成立,故B错误;对于C、,时,有成立,故C错误;对于D、由不等式的性质分析可得若,必有成立,则D正确;故选:D.【点睛】本题考查不等式的性质,对于错误的结论举出反例即可.2、C【解析】
由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【点睛】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.3、C【解析】
根据扇形面积公式得到半径,再计算扇形弧长.【详解】扇形弧长故答案选C【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力.4、C【解析】
利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.5、C【解析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项6、B【解析】①;②;③;④,所以正确的为①②,选B.7、D【解析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.8、D【解析】
解不等式4sin【详解】因为f(x)=4所以4sinxcos解得kπ+π故选:D【点睛】本题主要考查三角函数定义域的求法,考查解三角不等式,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】
计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.10、C【解析】试题分析:利用直线的斜率公式求解.解:∵过点P(﹣2,m)和Q(m,4)的直线斜率等于1,∴k==1,解得m=1.故选C.考点:直线的斜率.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.12、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.13、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)14、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.15、6【解析】
由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.16、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或,(2),增区间为:【解析】
(1)根据得到,再根据的范围解方程即可.(2)首先根据题意得到,再根据的范围即可得到函数的最大值和单调增区间.【详解】因为,所以,即.因为,.所以或,即或.(2).因为,所以.所以,.因为,所以.令,得.因为,所以增区间为:.【点睛】本题第一问考查根据三角函数值求角,同时考查了平面向量平行的坐标运算,第二问考查了三角函数的最值和单调区间,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【点睛】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.19、(1)见解析;(2)见解析;(3)不是【解析】
(1),利用两角和的正弦和二倍角公式,进行证明;(2)对分奇偶,即和两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将表示出来,然后判断其每一项都为无理数,从而得到答案.【详解】(1)所以原式得证.(2)为奇数时,时,,其中,成立时,,其中,成立时,,其中,成立,则当时,所以得到因为均为整数,所以也均为整数,故原式成立;为偶数时,时,,其中,时,,其中,成立,时,,其中,成立,则当时,所以得到其中,因为均为整数,所以也均为整数,故原式成立;综上可得:对任何正整数,存在多项式函数,使得对所有实数均成立,其中,均为整数,当为奇数时,,当为偶数时,;(3)由(2)可得其中均为有理数,因为为无理数,所以均为无理数,故为无理数,所以不是有理数.【点睛】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.20、(1);(2)见解析.【解析】
(1)参变分离后可得在上恒成立,利用基本不等式可求的最小值,从而得到参数的取值范围.(2)原不等式可化为,就对应方程的两根的大小关系分类讨论可得不等式的解集.【详解】(1)对任意的,恒成立即恒成立.因为当时,(当且仅当时等号成立),所以即.(2)不等式,即,①当即时,;②当即时,;③当即时,.综上:当时,不等式解集为;当时,不等式解集为;当时,不等式解集为.【点睛】含参数的一元二次不等式,其一般的解法是:先考虑对应的二次函数的开口方向,再考虑其判别式的符号,其次在判别式大于零的条件下比较两根的大小,最后根据不等号的方向和开口方向得到不等式的解.一元二次不等式的恒成立问题,参变分离后可以转化为函数的最值进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程承包:墙体拆除项目合同条款3篇
- 2024年度网络平台运营与合作合同
- 2024年度企业资产重组与转让合同
- 2024年度企业合并及股权转让合同
- 2024年度办公楼物业管理合作协议
- 2024年度绿色农产品供应与销售合同3篇
- 2024年度标准砖市场供需合同
- 2024年度股权转让合同标的及交易条件详细阐述
- 物流信息技术与应用 课件 8.项目八 智能分析与计算技术
- 2024年度场地租赁咨询合同
- 办理退休委托书
- 合作伙伴生态构建计划
- 蓝蓝的夜蓝蓝的梦三部童声合唱谱
- 农贸市场反恐应急处置预案
- 屠宰行业价值分析
- 【智慧农业在农业生产经营的应用研究5000字】
- 软件专业学生生涯发展展示
- 解读三中全会决定《深化国防和军队改革》课件
- 脊柱损伤固定搬运术教学课件
- 初中英语阅读-篇章结构强化练习(附答案)
- 医疗器械安装调试方案
评论
0/150
提交评论