版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市永春第一中学2025届高一下数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=sin2x的图象可由函数A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π62.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.3.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.4.函数的图像关于直线对称,则的最小值为()A. B. C. D.15.以下现象是随机现象的是A.标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为C.走到十字路口,遇到红灯D.三角形内角和为180°6.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.7.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.8.已知,当取得最小值时()A. B. C. D.9.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定10.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11._________________.12.在等比数列中,若,则等于__________.13.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.14.已知,,且,若恒成立,则实数的取值范围是____.15.设,,则______.16.已知数列满足:,,则数列的前项的和_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设的内角为所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围.18.已知单调递减数列的前项和为,,且,则_____.19.已知函数.(1)求函数的最小正周期;(2)求函数的单调区间.20.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.21.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接利用函数图象平移规律得解.【详解】函数y=sin2x-π可得函数y=sin整理得:y=故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。2、D【解析】
抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【点睛】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.3、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.4、C【解析】
的对称轴为,化简得到得到答案.【详解】对称轴为:当时,有最小值为故答案选C【点睛】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.5、C【解析】
对每一个选项逐一分析判断得解.【详解】A.标准大气压下,水加热到100℃,必会沸腾,是必然事件;B.长和宽分别为a,b的矩形,其面积为,是必然事件;C.走到十字路口,遇到红灯,是随机事件;D.三角形内角和为180°,是必然事件.故选C【点睛】本题主要考查必然事件、随机事件的定义与判断,意在考查学生对该知识的理解掌握水平,属于基础题.6、B【解析】
化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【详解】利用正弦定理和余弦定理得到:故选B【点睛】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.7、B【解析】
根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.8、D【解析】
可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.9、C【解析】
求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.10、A【解析】
根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.
故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,12、【解析】
由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.13、6【解析】
利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.14、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值15、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、【解析】
通过令求出数列的前几项,猜测是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.然后根据递推式给予证明,最后由等比数列的前项和公式计算.【详解】当时,,,,,,,当时,,,,,,,当时,,,,,,,猜测,是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.设中,即,∴,由于都是正整数,所以,所以数列中第项开始大于3,前项是以为首项,2为公比的等比数列.,所以是以为周期的周期数列,所以.故答案为:.【点睛】本题考查等比数列的前项和,考查数列的周期性.解题关键是确定数列的周期性.方法采取的是从特殊到一般,猜想与证明.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)已知,由余弦定理角化边得,再由余弦定理可得角的值;(2)根据与,由正弦定理求得,,结合代入到的周长表达式,利用三角恒等变换化简得到的周长关于角的三角函数,再根据正弦函数的图象与性质,即可求解周长的取值范围.试题解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周长,,的周长,故的周长的取值范围为.点睛:在解三角形的范围问题时往往要运用正弦定理或余弦定理转化为角度的范围问题,这样可以利用辅助角公式进行化简,再根据角的范围求得最后的结果.18、【解析】
根据,再写出一个等式:,利用两等式判断并得到等差数列的通项,然后求值.【详解】当时,,∴.当时,,①,②①②,得,化简得,或,∵数列是递减数列,且,∴舍去.∴数列是等差数列,且,公差,故.【点睛】在数列中,其前项和为,则有:,利用此关系,可将与的递推公式转化为关于的等式,从而判断的特点.19、(1)的最小正周期为(2)的单调增区间为【解析】试题分析:(1)化简函数的解析式得,根据周期公式求得函数的周期;(2)由求得的取值范围即为函数的单调增区间,由求得取值范围即为函数的单调减区间。试题解析:(Ⅰ)∴的最小正周期为.(Ⅱ)由,得∴的单调增区间为由得∴的单调减区间为20、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上所述,当时,.【点睛】本题主要考查利用构造法证明等比数列并求通项公式,以及数列与不等式的综合问题.21、(1)(–5,–4)(2)【解析】
(1)设点,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿项目式学习与探究能力考核试卷
- 时尚市场的市场细分与定位考核试卷
- 广告创作与互动媒体考核试卷
- 活动临时附加合同范例
- 政府工程欠款合同范例
- 熊猫居间协议合同模板
- 亲子服务合同模板
- 灯箱制作安装合同模板
- 抖音项目合同范例
- 改造光纤工程合同模板
- 普外科一科一品一特色科室活动方案
- 11.20世界慢阻肺日认识你的肺功能预防控制和消除慢阻肺课件
- 外研版英语2024七年级上册全册单元知识清单(默写版)
- 国开2024年秋《机电控制工程基础》形考任务4答案
- 沂蒙红色文化与沂蒙精神智慧树知到期末考试答案2024年
- 山东省义务教育必修地方课程小学五年级上册《环境教育》教案 全册精品
- 最实用七年级语文语法:词性实词、虚词部编本
- 《正确的写字姿势》PPT课件.ppt
- 汽车类西班牙语词汇
- 检维修风险分析记录10001
- 海拉EPS角度传感器ppt课件
评论
0/150
提交评论