2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题含解析_第1页
2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题含解析_第2页
2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题含解析_第3页
2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题含解析_第4页
2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京八中怡海分校数学高一下期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本2.已知,则下列不等式成立的是()A. B. C. D.3.已知平面向量,满足,,且,则与的夹角为()A. B. C. D.4.如图,矩形ABCD中,AB=2,AD=1,P是对角线AC上一点,,过点P的直线分别交DA的延长线,AB,DC于点M,E,N.若(m>0,n>0),则2m+3n的最小值是()A. B.C. D.5.已知的三个内角之比为,那么对应的三边之比等于()A. B. C. D.6.已知角的终边经过点(3,-4),则的值为()A. B. C. D.7.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等8.若直线与直线关于点对称,则直线恒过点()A. B. C. D.9.用表示不超过的最大整数(如,).数列满足,若,则的所有可能值的个数为()A.1 B.2 C.3 D.410.下列角中终边与相同的角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若锐角满足则______.12.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.13.若满足约束条件则的最大值为__________.14.已知扇形的圆心角为,半径为,则扇形的面积.15.若各项均为正数的等比数列,,则它的前项和为______.16.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,中,,角的平分线长为1.(1)求;(2)求边的长.18.已知向量,,且函数.若函数的图象上两个相邻的对称轴距离为.(Ⅰ)求函数的解析式;(Ⅱ)若方程在时,有两个不同实数根,,求实数的取值范围,并求出的值;(Ⅲ)若函数在的最大值为2,求实数的值.19.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.20.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.21.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.2、D【解析】

利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【点睛】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.3、C【解析】

根据列方程,结合向量数量积的运算以及特殊角的三角函数值,求得与的夹角.【详解】由于,故,所以,所以,故选C.【点睛】本小题主要考查两个向量垂直的表示,考查向量数量积运算,考查特殊角的三角函数值,考查两个向量夹角的求法,属于基础题.4、C【解析】设,则又当且仅当时取等号,故选点睛:在利用基本不等式求最值的时候,要特别注意“拆,拼,凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数),“定”(不等式的另一边必须为定值),“等”(等号取得的条件)的条件才能应用,否则会出现错误.5、D【解析】∵已知△ABC的三个内角之比为,∴有,再由,可得,故三内角分别为.再由正弦定理可得三边之比,故答案为点睛:本题考查正弦定理的应用,结合三角形内角和等于,很容易得出三个角的大小,利用正弦定理即出结果6、A【解析】

先求出的值,即得解.【详解】由题得,,所以.故选A【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.7、D【解析】

对于含变量的直线问题可采用赋特殊值法进行求解【详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图

均为等边三角形而面积不等,故错误,答案选D.【点睛】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.8、C【解析】

利用直线过定点可求所过的定点.【详解】直线过定点,它关于点的对称点为,因为关于点对称,故直线恒过点,故选C.【点睛】一般地,若直线和直线相交,那么动直线必过定点(该定点为的交点).9、C【解析】

数列取倒数,利用累加法得到通项公式,再判断的所有可能值.【详解】两边取倒数:利用累加法:为递增数列.计算:,整数部分为0,整数部分为1,整数部分为2的所有可能值的个数为0,1,2答案选C【点睛】本题考查了累加法求数列和,综合性强,意在考查学生对于新知识的阅读理解能力,解决问题的能力,和计算能力.10、B【解析】与30°的角终边相同的角α的集合为{α|α=330°+k•360°,k∈Z}当k=-1时,α=-30°,故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.12、【解析】试题分析:因为,所以.考点:向量坐标运算.13、【解析】

作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.14、【解析】试题分析:由题可知,;考点:扇形面积公式15、【解析】

利用等比数列的通项公式求出公比,由此能求出它的前项和.【详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【点睛】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.16、1【解析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由题意知为锐角,利用二倍角余弦公式结合条件可计算出的值;(2)利用内角和定理以及诱导公式计算出,在中利用正弦定理可计算出.【详解】(1),则B为锐角,;(2),在中,由,得.【点睛】本题考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有关问题时,要根据已知元素类型合理选择正弦定理与余弦定理,考查计算能力,属于中等题.18、(Ⅰ);(Ⅱ),;(Ⅲ)或【解析】

(Ⅰ)根据三角恒等变换公式化简,根据周期计算,从而得出的解析式;(Ⅱ)求出在,上的单调性,计算最值和区间端点函数值,从而得出的范围,根据对称性得出的值;(Ⅲ)令,求出的范围和关于的二次函数,讨论二次函数单调性,根据最大值列方程求出的值.【详解】(Ⅰ)∵,,∴若函数的图象上两个相邻的对称轴距离为,则函数的周期,∴,即,∴(Ⅱ)由(Ⅰ)知,,当时,∴若方程在有两个不同实数根,则.∴令,,则,,∴函数在内的对称轴为,∵,是方程,的两个不同根,∴(Ⅲ)因为,所以,令,则.∴又∵,由得,∴.(1)当,即时,可知在上为减函数,则当时,由,解得:,不合题意,舍去.(2)当,即时,结合图象可知,当时,,由,解得,满足题意.(3)当,即时,知在上为增函数,则时,,由得,舍去综上,或为所求.【点睛】本题考查了平面向量的数量积的运算,三角函数的恒等变换,三角函数最值的计算,考查换元法解题思想,属于中档题.19、(1),;(2)见解析;(3)存在,.【解析】

(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【点睛】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1),用累加法;(2),可变形为,利用等比数列的通项公式可求的通项公式,两种方法都可以得到的通项公式.(3)递推关系式中有与前项和,可利用实现与之间的相互转化.另外,数列不等式恒成立与有解问题,可转化为数列的最值(或项的范围)来处理.20、(1);(2)或.【解析】

(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【点睛】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考查计算能力,属中档题.21、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解析】

(1)①举出符合条件的具体例子即可;②反证法推出矛盾;

(2)根据题意找出符合条件的为等差数列即可;

(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”

取分别为1,3,5,7,9,11,13即可;

数列②2,,,,不是“弱等差数列”

否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,

,又与矛盾,所以数列②2,,,,不是“弱等差数列”;

(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论