版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州新区一中高一下数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,平面,且,下列条件中能推出的是()A. B. C. D.与相交2.当前,我省正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.30 B.40 C.20 D.363.单位圆中,的圆心角所对的弧长为()A. B. C. D.4.在中,分别是角的对边,,则角为()A. B. C. D.或5.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为()A. B. C. D.6.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.7.直线(是参数)被圆截得的弦长等于()A. B. C. D.8.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④9.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.11010.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,内角A,B,C所对的边分别为a,b,c,若的面积为,且,则的周长的取值范围是________.12.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.13.设是数列的前项和,且,,则__________.14.等比数列中前n项和为,且,,,则项数n为____________.15.若数列满足,则_____.16.与30°角终边相同的角_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.18.已知数列满足,令(1)求证数列为等比数列,并求通项公式;(2)求数列的前n项和.19.如图,在四棱锥中,,侧面底面.(1)求证:平面平面;(2)若,且二面角等于,求直线与平面所成角的正弦值.20.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(I)求的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.21.设常数函数(1)若求函数的反函数(2)根据的不同取值,讨论函数的奇偶性,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据线面垂直的性质,逐项判断即可得出结果.【详解】A中,若,由,可得;故A不满足题意;B中,若,由,可得;故B不满足题意;C中,若,由,可得;故C正确;D中,若与相交,由,可得异面或平,故D不满足题意.故选C【点睛】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型.2、A【解析】
先求出每个个体被抽到的概率,再由乙社区的低收入家庭数量乘以每个个体被抽到的概率,即可求解【详解】每个个体被抽到的概率为,乙社区由270户低收入家庭,故应从乙中抽取低收入家庭的户数为,故选:A【点睛】本题考查分层抽样的应用,属于基础题3、B【解析】
将转化为弧度,即可得出答案.【详解】,因此,单位圆中,的圆心角所对的弧长为.故选B.【点睛】本题考查角度与弧度的转化,同时也考查了弧长的计算,考查计算能力,属于基础题.4、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】
有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,由此能求出从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率.【详解】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:p.故选C.【点睛】本题考查概率的求法,考查古典概型、正方体的结构特征等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.6、D【解析】
通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【详解】由题意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本题选D.【点睛】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.7、D【解析】
先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.8、C【解析】
根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.9、A【解析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.10、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过观察的面积的式子很容易和余弦定理联系起来,所以,求出,所以.再由正弦定理即可将的范围通过辅助角公式化简利用三角函数求出范围即可.【详解】因为的面积为,所以,所以.由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】此题考察解三角形,熟悉正余弦定理,然后一般求范围的题目转化为求解三角函数值域即可,易错点注意转化后角的范围区间,属于中档题目.12、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.13、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、6【解析】
利用等比数列求和公式求得,再利用通项公式求解n即可【详解】,代入,,得,又,得.故答案为:6【点睛】本题考查等比数列的通项公式及求和公式的基本量计算,熟记公式准确计算是关键,是基础题15、【解析】
由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.16、【解析】
根据终边相同的角的定义可得答案.【详解】与30°角终边相同的角,故答案为:【点睛】本题考查了终边相同的角的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)三段人数分别为3,2,1(3)【解析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人数为n,由,可得n=1000,从而体重超过65kg的总人数300,由此能求出各组应分别抽取的人数;(3)利用频率分布直方图能估计高二男生的体重的中位数与平均数试题解析:(1)体重在内的频率补全的频率分布直方图如图所示.(2)设男生总人数为,由,可得体重超过的总人数为在的人数为,应抽取的人数为,在的人数为,应抽取的人数为,在的人数为,应抽取的人数为.所以在,,三段人数分别为3,2,1.(3)中位数为60kg,平均数为(kg)考点:1.众数、中位数、平均数;2.分层抽样方法;3.频率分布直方图18、(1);(2)【解析】
(1)由变形可得,即,于是可得数列为等比数列,进而得到通项公式;(2)由(1)得,然后分为奇数、偶数两种情况,将转化为数列的求和问题解决.【详解】(1)∵,∴,∵,∴.又,∴数列是首项为8,公比为3的等比数列,∴.(2)当为正偶数时,.当为正奇数时,.∴.【点睛】(1)证明数列为等比数列时,在运用定义证明的同时还要说明数列中不存在等于零的项,这一点容易忽视.(2)数列求和时要根据数列通项公式的特点,选择合适的方法进行求解,求解时要注意确定数列的项数.19、(1)证明见解析;(2).【解析】
(1)由得,,由侧面底面得侧面,由面面垂直的判定即可证明;(2)由侧面,可得,得是二面角的平面角,,推得为等腰直角三角形,取的中点,连接可得,由平面平面,得平面,证明平面,得点到平面的距离等于点到平面的距离,,再利用求解即可【详解】(1)证明:由可得,因为侧面底面,交线为底面且则侧面,平面所以,平面平面;(2)由侧面可得,,则是二面角的平面角,由可得,为等腰直角三角形取的中点,连接可得因为平面平面,交线为平面且所以平面,点到平面的距离为.因为平面则平面所以点到平面的距离等于点到平面的距离,.设,则在中,;在中,设直线与平面所成角为即所以,直线与平面所成角的正弦值为.【点睛】本题考查面面垂直的判定,二面角及线面角的求解,考查空间想象能与运算求解能力,关键是线面平行的性质得到点D到面的距离,是中档题20、(Ⅰ)(Ⅱ)平均数74.9,众数75.14,中位数75;(Ш)【解析】
(I)根据频率之和为列方程,结合求出的值.(II)利用各组中点值乘以频率然后相加,求得平均数.利用中位数是面积之和为的地方,列式求得中位数.以频率分布直方图最高一组的中点作为中位数.(III)先计算出从,中分别抽取人和人,再利用列举法和古典概型概率计算公式,计算出所求的概率.【详解】解:(I)依题意得,所以,又,所以.(Ⅱ)平均数为中位数为众数为(Ш)依题意,知分数在的市民抽取了2人,记为,分数在的市民抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人所有的情况为:,共28种,其中满足条件的为,共13种,设“至少有1人的分数在”的事件为,则【点睛】本小题主要考查求解频率分布直方图上的未知数,考查利用频率分布直方图估计平均数、中位数和众数的方法,考查利用古典概型求概率.属于中档题.21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车配送合同范例
- 授权使用照合同范例
- 改造造价咨询合同范例
- 栏目合作合同范例
- 政府单位餐厅租赁合同范例
- 机械开挖基坑合同范例
- 宾利汽车销售合同范例
- 智能牌制作合同范例
- 期货加盟合同范例
- 2025届甘肃省永昌四中高考适应性考试英语试卷含解析
- 职业危害监测制度
- 基础抹灰技术交底
- 2023年英语专业四级单选题汇总
- GB/T 451.3-2002纸和纸板厚度的测定
- GB/T 31548-2015电动自行车轮胎系列
- GB/T 21661-2020塑料购物袋
- GB/T 14480.1-2015无损检测仪器涡流检测设备第1部分:仪器性能和检验
- 《 小二黑结婚 》课件-统编版高中语文选择性必修中册
- FZ/T 21001-2019自梳外毛毛条
- CB/T 3780-1997管子吊架
- 四川省阿坝藏族羌族自治州《综合知识》事业单位国考真题
评论
0/150
提交评论