2025届四川省绵阳市东辰高中数学高一下期末经典试题含解析_第1页
2025届四川省绵阳市东辰高中数学高一下期末经典试题含解析_第2页
2025届四川省绵阳市东辰高中数学高一下期末经典试题含解析_第3页
2025届四川省绵阳市东辰高中数学高一下期末经典试题含解析_第4页
2025届四川省绵阳市东辰高中数学高一下期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省绵阳市东辰高中数学高一下期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.2.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.3.的值等于()A. B. C. D.4.设向量,满足,,则()A.1 B.2 C.3 D.55.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.6.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.177.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.8.已知为等差数列,其前项和为,若,,则公差等于()A. B. C. D.9.设,则()A. B. C. D.10.如果直线与平面不垂直,那么在平面内()A.不存在与垂直的直线 B.存在一条与垂直的直线C.存在无数条与垂直的直线 D.任意一条都与垂直二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,的对边分别为,,,若,则________.12.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.13.在中,分别是角的对边,已知成等比数列,且,则的值为________.14.数列的前项和为,,且(),记,则的值是________.15.若则的最小值是__________.16.函数单调递减区间是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.18.已知数列中,.(1)求证:是等比数列,求数列的通项公式;(2)已知:数列,满足①求数列的前项和;②记集合若集合中含有个元素,求实数的取值范围.19.如图,在三棱锥中,底面ABC,D是PC的中点,已知,,,,求:(1)三棱锥的体积;(2)异面直线BC与AD所成的角的余弦值大小.20.已知向量,的夹角为120°,且||=2,||=3,设32,2.(Ⅰ)若⊥,求实数k的值;(Ⅱ)当k=0时,求与的夹角θ的大小.21.已知函数(其中,)的最小正周期为,且图象经过点(1)求函数的解析式:(2)求函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.2、D【解析】

设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.3、D【解析】

利用诱导公式先化简,再利用差角的余弦公式化简得解.【详解】由题得原式=.故选D【点睛】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.4、A【解析】

将等式进行平方,相加即可得到结论.【详解】∵||,||,∴分别平方得2•10,2•6,两式相减得4•10﹣6=4,即•1,故选A.【点睛】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5、D【解析】

由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.6、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.7、A【解析】

根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【点睛】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.8、C【解析】

由题意可得,又,所以,故选C.【点睛】本题考查两个常见变形公式和.9、D【解析】

由得,再计算即可.【详解】,,所以故选D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题.10、C【解析】

因为直线l与平面不垂直,必然会有一条直线与其垂直,而所有与该直线平行直线也与其垂直,因此选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用余弦定理与不等式结合的思想求解,,的关系.即可求解的值.【详解】解:根据①余弦定理②由①②可得:化简:,,,,,,此时,故得,即,.故答案为:.【点睛】本题主要考查了存在性思想,余弦定理与不等式结合的思想,界限的利用.属于中档题.12、④【解析】

利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题13、【解析】

利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.14、3【解析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.15、【解析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.16、【解析】

先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由,解得或,所以函数的定义域为.令,则函数在上单调递减,在上单调递增,又为增函数,则根据同增异减得,函数单调递减区间为.【点睛】复合函数法:复合函数的单调性规律是“同则增,异则减”,即与若具有相同的单调性,则为增函数,若具有不同的单调性,则必为减函数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2).【解析】

(1)先用二倍角公式化简,再根据正弦定理即可解出;(2)用正弦定理分别表示,再用三角形内角和及和差公式化简,转化为三角函数求最值.【详解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周长:,又因为,所以.因此周长的取值范围是.【点睛】本题考查了正余弦定理解三角形,三角形求边长取值范围常用的方法:1、转化为三角函数求最值;2、基本不等式.18、(1)证明见解析,(2)①②【解析】

(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为①②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【点睛】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.19、(1),(2)【解析】

(1)先求出,然后由底面ABC得,即可算出答案(2)取的中点,可得是异面直线BC与AD所成的角(或其补角),然后在中,用余弦定理即可算出【详解】(1)因为,,所以因为底面ABC,所以(2)如图,取的中点,连接,则所以是异面直线BC与AD所成的角(或其补角)在中,所以由余弦定理得所以异面直线BC与AD所成的角的余弦值大小为【点睛】求异面直线所成的角是将直线平移转化为相交直线所成的角,要注意异面直线所成角的范围是.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用⊥,结合向量的数量积的运算公式,得到关于的方程,即可求解;(Ⅱ)当时,利用向量的数量积的运算公式,以及向量的夹角公式,即可求解.【详解】(Ⅰ)由题意,向量,的夹角为120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)当k=0时,,则.因为,由向量的夹角公式,可得,又因为0≤θ≤π,∴,所以与的夹角θ的大小为.【点睛】本题主要考查了向量的数量积的运算,以及向量的夹角公式的应用,其中解答中熟记向量的运算公式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论