云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题含解析_第1页
云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题含解析_第2页
云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题含解析_第3页
云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题含解析_第4页
云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市华宁二中2025届高一数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棉花的纤维长度是棉花质量的重要指标.在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A.这批棉花的纤维长度不是特别均匀B.有一部分棉花的纤维长度比较短C.有超过一半的棉花纤维长度能达到以上D.这批棉花有可能混进了一些次品2.若,,则的值是()A. B. C. D.3.为研究需要,统计了两个变量x,y的数据·情况如下表:其中数据x1、x2、x3…xn,和数据y1、y2、y3,…yn的平均数分别为和,并且计算相关系数r=-1.8,回归方程为,有如下几个结论:①点(,)必在回归直线上,即=b+;②变量x,y的相关性强;③当x=x1,则必有;④b<1.其中正确的结论个数为A.1 B.2 C.3 D.44.设、满足约束条件,则的最大值为()A. B.C. D.5.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.7 B.12 C.17 D.346.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.7.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}8.直线的倾斜角为()A. B. C. D.9.已知平面向量,,若与同向,则实数的值是()A. B. C. D.10.对于函数f(x)=2sinxcosx,下列选项中正确的是()A.f(x)在(,)上是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为 D.f(x)的最大值为2二、填空题:本大题共6小题,每小题5分,共30分。11.函数在内的单调递增区间为____.12.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=513.已知数列满足:,,则使成立的的最大值为_______14.已知点和点,点在轴上,若的值最小,则点的坐标为______.15.已知一个扇形的周长为4,则扇形面积的最大值为______.16.已知直线与圆相交于,两点,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在公比不为1的等比数列中,,且依次成等差数列(1)求数列的通项公式;(2)令,设数列的前项和,求证:18.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.19.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.(1)求茎叶图中数据的平均数和的值;(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.20.如图,在四边形中,.(1)若为等边三角形,且是的中点,求.(2)若,,求.21.已知函数.(1)求(x)的最小正周期和单调递增区间;(2)求f(x)在区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为:棉花纤维长度达到以上的不超过一半不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.2、B【解析】,,,故选B.3、C【解析】

根据回归方程的性质和相关系数的性质求解.【详解】回归直线经过样本中心点,故①正确;变量的相关系数的绝对值越接近与1,则两个变量的相关性越强,故②正确;根据回归方程的性质,当时,不一定有,故③错误;由相关系数知负相关,所以,故④正确;故选C.【点睛】本题考查回归直线和相关系数,注意根据回归方程得出的是估计值不是准确值.4、C【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.5、C【解析】第一次循环:a=2,s=2,k=1;第二次循环:a=2,s=6,k=2;第三次循环:a=5,s=17,k=3>2;结束循环,输出s=17,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.6、C【解析】

先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.7、B【解析】

根据交集定义计算.【详解】由题意A∩B={x|3<x<4}.故选B.【点睛】本题考查集合的交集运算,属于基础题.8、C【解析】

由直线方程求出直线的斜率,即得倾斜角的正切值,从而求出倾斜角.【详解】设直线的倾斜角为,由,得:,故中直线的斜率,∵,∴;故选C.【点睛】本题考查了直线的倾斜角与斜率的问题,是基础题.9、D【解析】

通过同向向量的性质即可得到答案.【详解】与同向,,解得或(舍去),故选D.【点睛】本题主要考查平行向量的坐标运算,但注意同向,难度较小.10、B【解析】

解:,是周期为的奇函数,

对于A,在上是递减的,错误;

对于B,是奇函数,图象关于原点对称,正确;

对于C,是周期为,错误;

对于D,的最大值为1,错误;

所以B选项是正确的.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。12、1【解析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.13、4【解析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.14、【解析】

作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.15、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.16、.【解析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见证明【解析】

(1)根据已知条件得到关于的方程组,解方程组得的值,即得数列的通项公式;(2)先求出,,再利用裂项相消法求,不等式即得证.【详解】(1)设公比为,,,成等差数列,可得,即,解得(舍去),或,又,解得所以.(2)故,得【点睛】本题主要考查等比数列通项的求法,考查等差数列前n项和的求法,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2)【解析】

(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.19、(1)平均数为;(2)【解析】

(1)由题意,根据图中个数据的中位数为,由平均数与中位数相同,得平均数为,所以,解得;(2)依题意,人中,“基本满意”有人,“满意”有人,“很满意”有人.“满意”和“很满意”的人共有人.分别记“满意”的人为,,,,“很满意”的人为,,,.从中随机抽取人的一切可能结果所组成的基本事件共个:,,,,,,,,,,,,,,,,,,,,,,,,,,,.用事件表示“人中至少有人是很满意”这一件事,则事件由个基本事件组成:,,,,,,,,,,,,,,,,,,,,,,共有22个.故事件的概率为【点睛】本题主要考查了茎叶图的应用,以及古典概型及其概率的计算问题,其中解答中熟记茎叶图的中的平均数和中位数的计算,以及利用列举法得出基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1)(2)【解析】

(1)先由题意,结合平面向量基本定理,用表示出,再由向量的数量积运算,即可得出结果;(2)先由向量数量积的运算,求出,再由,结合题中条件,即可得出结果.【详解】解:(1)为等边三角形,且,又是中点,又(2)由题意:,,,又【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.21、(1),的增区间是.(2).【解析】试题分析:(1)利用两角和正弦公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论